Ay Nihat, Krakauer David C
Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, D-04103 Leipzig, Germany.
Theory Biosci. 2007 Apr;125(2):93-121. doi: 10.1016/j.thbio.2006.06.002. Epub 2006 Aug 2.
We provide a geometric framework for investigating the robustness of information flows over biological networks. We use information measures to quantify the impact of knockout perturbations on simple networks. Robustness has two components, a measure of the causal contribution of a node or nodes, and a measure of the change or exclusion dependence, of the network following node removal. Causality is measured as statistical contribution of a node to network function, whereas exclusion dependence measures a distance between unperturbed network and reconfigured network function. We explore the role that redundancy plays in increasing robustness, and how redundacy can be exploited through error-correcting codes implemented by networks. We provide examples of the robustness measure when applied to familiar boolean functions such as the AND, OR and XOR functions. We discuss the relationship between robustness measures and related measures of complexity and how robustness always implies a minimal level of complexity.
我们提供了一个几何框架,用于研究生物网络上信息流的稳健性。我们使用信息度量来量化基因敲除扰动对简单网络的影响。稳健性有两个组成部分,一个是对一个或多个节点因果贡献的度量,另一个是节点移除后网络的变化或排除依赖性的度量。因果关系被衡量为一个节点对网络功能的统计贡献,而排除依赖性则衡量未受扰动的网络与重新配置的网络功能之间的距离。我们探讨了冗余在提高稳健性中所起的作用,以及如何通过网络实现的纠错码来利用冗余。我们给出了应用于诸如与、或和异或函数等常见布尔函数时稳健性度量的示例。我们讨论了稳健性度量与相关复杂性度量之间的关系,以及稳健性如何总是意味着最低程度的复杂性。