Suppr超能文献

PyDPI:用于化学生物信息学、生物信息学和化学基因组学研究的免费 Python 软件包。

PyDPI: freely available python package for chemoinformatics, bioinformatics, and chemogenomics studies.

机构信息

School of Pharmaceutical Sciences, Central South University , Changsha 410013, P.R. China.

出版信息

J Chem Inf Model. 2013 Nov 25;53(11):3086-96. doi: 10.1021/ci400127q. Epub 2013 Oct 24.

Abstract

The rapidly increasing amount of publicly available data in biology and chemistry enables researchers to revisit interaction problems by systematic integration and analysis of heterogeneous data. Herein, we developed a comprehensive python package to emphasize the integration of chemoinformatics and bioinformatics into a molecular informatics platform for drug discovery. PyDPI (drug-protein interaction with Python) is a powerful python toolkit for computing commonly used structural and physicochemical features of proteins and peptides from amino acid sequences, molecular descriptors of drug molecules from their topology, and protein-protein interaction and protein-ligand interaction descriptors. It computes 6 protein feature groups composed of 14 features that include 52 descriptor types and 9890 descriptors, 9 drug feature groups composed of 13 descriptor types that include 615 descriptors. In addition, it provides seven types of molecular fingerprint systems for drug molecules, including topological fingerprints, electro-topological state (E-state) fingerprints, MACCS keys, FP4 keys, atom pair fingerprints, topological torsion fingerprints, and Morgan/circular fingerprints. By combining different types of descriptors from drugs and proteins in different ways, interaction descriptors representing protein-protein or drug-protein interactions could be conveniently generated. These computed descriptors can be widely used in various fields relevant to chemoinformatics, bioinformatics, and chemogenomics. PyDPI is freely available via https://sourceforge.net/projects/pydpicao/.

摘要

生物学和化学领域中公开数据的数量迅速增加,使研究人员能够通过系统地整合和分析异质数据来重新研究相互作用问题。在此,我们开发了一个全面的 Python 包,强调将化学信息学和生物信息学整合到一个分子信息学平台中,以用于药物发现。PyDPI(用 Python 进行药物-蛋白质相互作用)是一个强大的 Python 工具包,可用于计算蛋白质和肽的氨基酸序列的常用结构和物理化学特征、药物分子的拓扑分子描述符以及蛋白质-蛋白质相互作用和蛋白质-配体相互作用描述符。它计算了 6 个由 14 个特征组成的蛋白质特征组,其中包括 52 种描述符类型和 9890 个描述符;计算了 9 个由 13 种描述符类型组成的药物特征组,其中包括 615 个描述符。此外,它还为药物分子提供了七种类型的分子指纹系统,包括拓扑指纹、电拓扑状态 (E-state) 指纹、MACCS 键、FP4 键、原子对指纹、拓扑扭转指纹和 Morgan/循环指纹。通过以不同的方式将来自药物和蛋白质的不同类型的描述符结合起来,可以方便地生成代表蛋白质-蛋白质或药物-蛋白质相互作用的相互作用描述符。这些计算得到的描述符可以广泛应用于与化学信息学、生物信息学和化学生物组学相关的各个领域。PyDPI 可通过 https://sourceforge.net/projects/pydpicao/ 免费获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验