文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Machine learning applications for thermochemical and kinetic property prediction.

作者信息

Tomme Lowie, Ureel Yannick, Dobbelaere Maarten R, Lengyel István, Vermeire Florence H, Stevens Christian V, Van Geem Kevin M

机构信息

Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, 9052 Gent, Belgium.

ChemInsights LLC, Dover, DE 19901, USA.

出版信息

Rev Chem Eng. 2024 Nov 29;41(4):419-449. doi: 10.1515/revce-2024-0027. eCollection 2025 May.


DOI:10.1515/revce-2024-0027
PMID:40303423
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12037204/
Abstract

Detailed kinetic models play a crucial role in comprehending and enhancing chemical processes. A cornerstone of these models is accurate thermodynamic and kinetic properties, ensuring fundamental insights into the processes they describe. The prediction of these thermochemical and kinetic properties presents an opportunity for machine learning, given the challenges associated with their experimental or quantum chemical determination. This study reviews recent advancements in predicting thermochemical and kinetic properties for gas-phase, liquid-phase, and catalytic processes within kinetic modeling. We assess the state-of-the-art of machine learning in property prediction, focusing on three core aspects: data, representation, and model. Moreover, emphasis is placed on machine learning techniques to efficiently utilize available data, thereby enhancing model performance. Finally, we pinpoint the lack of high-quality data as a key obstacle in applying machine learning to detailed kinetic models. Accordingly, the generation of large new datasets and further development of data-efficient machine learning techniques are identified as pivotal steps in advancing machine learning's role in kinetic modeling.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17dc/12037204/1fde9881eedb/j_revce-2024-0027_fig_009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17dc/12037204/e03d06969ff3/j_revce-2024-0027_fig_001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17dc/12037204/50add97b718e/j_revce-2024-0027_fig_002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17dc/12037204/6e530afab88b/j_revce-2024-0027_fig_003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17dc/12037204/fdc8762958ea/j_revce-2024-0027_fig_004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17dc/12037204/9f399941668a/j_revce-2024-0027_fig_005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17dc/12037204/62c5661472aa/j_revce-2024-0027_fig_006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17dc/12037204/505dab307f55/j_revce-2024-0027_fig_007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17dc/12037204/b2a500349f4e/j_revce-2024-0027_fig_008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17dc/12037204/1fde9881eedb/j_revce-2024-0027_fig_009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17dc/12037204/e03d06969ff3/j_revce-2024-0027_fig_001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17dc/12037204/50add97b718e/j_revce-2024-0027_fig_002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17dc/12037204/6e530afab88b/j_revce-2024-0027_fig_003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17dc/12037204/fdc8762958ea/j_revce-2024-0027_fig_004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17dc/12037204/9f399941668a/j_revce-2024-0027_fig_005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17dc/12037204/62c5661472aa/j_revce-2024-0027_fig_006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17dc/12037204/505dab307f55/j_revce-2024-0027_fig_007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17dc/12037204/b2a500349f4e/j_revce-2024-0027_fig_008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17dc/12037204/1fde9881eedb/j_revce-2024-0027_fig_009.jpg

相似文献

[1]
Machine learning applications for thermochemical and kinetic property prediction.

Rev Chem Eng. 2024-11-29

[2]
Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.

Artif Intell Med. 2019-7-26

[3]
Artificial intelligence to deep learning: machine intelligence approach for drug discovery.

Mol Divers. 2021-8

[4]
Deciphering Reaction Mechanisms of Molecular Proton Reduction Catalysts with Cyclic Voltammetry: Kinetic vs Thermodynamic Control.

Acc Chem Res. 2025-3-18

[5]
Geometric deep learning for molecular property predictions with chemical accuracy across chemical space.

J Cheminform. 2024-8-13

[6]
Artificial intelligence methods for modeling gasification of waste biomass: a review.

Environ Monit Assess. 2024-2-26

[7]
AutoTemplate: enhancing chemical reaction datasets for machine learning applications in organic chemistry.

J Cheminform. 2024-6-27

[8]
Prediction and Construction of Energetic Materials Based on Machine Learning Methods.

Molecules. 2022-12-31

[9]
Machine Learning and Artificial Intelligence in Toxicological Sciences.

Toxicol Sci. 2022-8-25

[10]
Data-driven, explainable machine learning model for predicting volatile organic compounds' standard vaporization enthalpy.

Chemosphere. 2024-7

本文引用的文献

[1]
Subgraph Isomorphic Decision Tree to Predict Radical Thermochemistry with Bounded Uncertainty Estimation.

J Phys Chem A. 2024-4-11

[2]
Machine learning from quantum chemistry to predict experimental solvent effects on reaction rates.

Chem Sci. 2024-1-10

[3]
Fast evaluation of the adsorption energy of organic molecules on metals via graph neural networks.

Nat Comput Sci. 2023-5

[4]
Chemprop: A Machine Learning Package for Chemical Property Prediction.

J Chem Inf Model. 2024-1-8

[5]
Δ machine learning for reaction property prediction.

Chem Sci. 2023-7-19

[6]
Explainable Supervised Machine Learning Model To Predict Solvation Gibbs Energy.

J Chem Inf Model. 2024-4-8

[7]
A modified group contribution method for estimating thermodynamic parameters of methanol-to-olefins over a SAPO-34 catalyst.

Phys Chem Chem Phys. 2023-8-16

[8]
Δ-Machine learning for quantum chemistry prediction of solution-phase molecular properties at the ground and excited states.

Phys Chem Chem Phys. 2023-5-17

[9]
Comprehensive exploration of graphically defined reaction spaces.

Sci Data. 2023-3-20

[10]
Reaction profiles for quantum chemistry-computed [3 + 2] cycloaddition reactions.

Sci Data. 2023-2-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索