Department of Viticulture and Enology , University of California, Davis, California 95616.
Plant Physiol. 2013 Nov;163(3):1254-65. doi: 10.1104/pp.113.221283. Epub 2013 Sep 18.
To better understand water uptake patterns in root systems of woody perennial crops, we detailed the developmental anatomy and hydraulic physiology along the length of grapevine (Vitis berlandieri × Vitis rupestris) fine roots from the tip to secondary growth zones. Our characterization included the localization of suberized structures and aquaporin gene expression and the determination of hydraulic conductivity (Lpr) and aquaporin protein activity (via chemical inhibition) in different root zones under both osmotic and hydrostatic pressure gradients. Tissue-specific messenger RNA levels of the plasma membrane aquaporin isogenes (VvPIPs) were quantified using laser-capture microdissection and quantitative polymerase chain reaction. Our results highlight dramatic changes in structure and function along the length of grapevine fine roots. Although the root tip lacked suberization altogether, a suberized exodermis and endodermis developed in the maturation zone, which gave way to the secondary growth zone containing a multilayer suberized periderm. Longitudinally, VvPIP isogenes exhibited strong peaks of expression in the root tip that decreased precipitously along the root length in a pattern similar to Arabidopsis (Arabidopsis thaliana) roots. In the radial orientation, expression was always greatest in interior tissues (i.e. stele, endodermis, and/or vascular tissues) for all root zones. High Lpr and aquaporin protein activity were associated with peak VvPIP expression levels in the root tip. This suggests that aquaporins play a limited role in controlling water uptake in secondary growth zones, which contradicts existing theoretical predictions. Despite having significantly lower Lpr, woody roots can constitute the vast majority of the root system surface area in mature vines and thus provide for significant water uptake potential.
为了更好地理解木本多年生作物根系的水分吸收模式,我们详细描述了葡萄(Vitis berlandieri×Vitis rupestris)细根从根尖到次生生长区的发育解剖结构和水力生理学。我们的特征包括定位于栓质结构和水通道蛋白基因表达,以及在渗透和静水压力梯度下不同根区水力传导率(Lpr)和水通道蛋白活性(通过化学抑制)的测定。使用激光捕获显微解剖和定量聚合酶链反应,定量了质膜水通道蛋白同系物(VvPIPs)的组织特异性信使 RNA 水平。我们的结果突出了葡萄细根长度上结构和功能的巨大变化。尽管根尖完全缺乏栓质化,但在成熟区形成了栓质化的外皮层和内皮层,然后是次生生长区,其中含有多层栓质化周皮。从纵向来看,VvPIP 同系物在根尖处表达强烈,随着根长的增加而急剧下降,这种模式与拟南芥(Arabidopsis thaliana)根相似。在径向方向上,所有根区的表达总是在内部组织(即中柱、内皮层和/或维管束组织)中最高。高 Lpr 和水通道蛋白活性与根尖处的 VvPIP 表达水平高峰相关。这表明水通道蛋白在控制次生生长区的水分吸收方面作用有限,这与现有的理论预测相矛盾。尽管木质根的 Lpr 显著较低,但在成熟葡萄藤中,它们可以构成绝大多数根系表面积,从而提供巨大的水分吸收潜力。