Meuzelaar Heleen, Marino Kristen A, Huerta-Viga Adriana, Panman Matthijs R, Smeenk Linde E J, Kettelarij Albert J, van Maarseveen Jan H, Timmerman Peter, Bolhuis Peter G, Woutersen Sander
Van't Hoff Institute for Molecular Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands.
J Phys Chem B. 2013 Oct 3;117(39):11490-501. doi: 10.1021/jp404714c. Epub 2013 Sep 19.
Trp-cage is a synthetic 20-residue miniprotein which folds rapidly and spontaneously to a well-defined globular structure more typical of larger proteins. Due to its small size and fast folding, it is an ideal model system for experimental and theoretical investigations of protein folding mechanisms. However, Trp-cage's exact folding mechanism is still a matter of debate. Here we investigate Trp-cage's relaxation dynamics in the amide I' spectral region (1530-1700 cm(-1)) using time-resolved infrared spectroscopy. Residue-specific information was obtained by incorporating an isotopic label ((13)C═(18)O) into the amide carbonyl group of residue Gly11, thereby spectrally isolating an individual 310-helical residue. The folding-unfolding equilibrium is perturbed using a nanosecond temperature-jump (T-jump), and the subsequent re-equilibration is probed by observing the time-dependent vibrational response in the amide I' region. We observe bimodal relaxation kinetics with time constants of 100 ± 10 and 770 ± 40 ns at 322 K, suggesting that the folding involves an intermediate state, the character of which can be determined from the time- and frequency-resolved data. We find that the relaxation dynamics close to the melting temperature involve fast fluctuations in the polyproline II region, whereas the slower process can be attributed to conformational rearrangements due to the global (un)folding transition of the protein. Combined analysis of our T-jump data and molecular dynamics simulations indicates that the formation of a well-defined α-helix precedes the rapid formation of the hydrophobic cage structure, implying a native-like folding intermediate, that mainly differs from the folded conformation in the orientation of the C-terminal polyproline II helix relative to the N-terminal part of the backbone. We find that the main free-energy barrier is positioned between the folding intermediate and the unfolded state ensemble, and that it involves the formation of the α-helix, the 310-helix, and the Asp9-Arg16 salt bridge. Our results suggest that at low temperature (T ≪ Tm) a folding path via formation of α-helical contacts followed by hydrophobic clustering becomes more important.
色氨酸笼是一种由20个残基组成的合成微蛋白,它能快速自发地折叠成一种更典型的、较大蛋白质所具有的明确球状结构。由于其尺寸小且折叠速度快,它是用于蛋白质折叠机制实验和理论研究的理想模型系统。然而,色氨酸笼的确切折叠机制仍存在争议。在此,我们使用时间分辨红外光谱研究色氨酸笼在酰胺I'光谱区域(1530 - 1700 cm⁻¹)的弛豫动力学。通过将同位素标记(¹³C═¹⁸O)引入残基Gly11的酰胺羰基,从而在光谱上分离出一个单独的310 - 螺旋残基,获得了残基特异性信息。使用纳秒级温度跳跃(T - jump)扰动折叠 - 去折叠平衡,并通过观察酰胺I'区域随时间变化的振动响应来探测随后的重新平衡。我们在322 K下观察到具有100 ± 10和770 ± 40 ns时间常数的双峰弛豫动力学,这表明折叠涉及一个中间态,其特征可从时间和频率分辨数据中确定。我们发现,接近解链温度时的弛豫动力学涉及多聚脯氨酸II区域的快速波动,而较慢的过程可归因于蛋白质整体(去)折叠转变引起的构象重排。对我们的T - jump数据和分子动力学模拟的联合分析表明,明确的α - 螺旋的形成先于疏水笼结构的快速形成,这意味着存在一种类似天然态的折叠中间体,它与折叠构象的主要区别在于C端多聚脯氨酸II螺旋相对于主链N端部分的取向。我们发现主要的自由能障碍位于折叠中间体和未折叠态系综之间,并且它涉及α - 螺旋、310 - 螺旋和Asp9 - Arg16盐桥的形成。我们的结果表明,在低温(T ≪ Tm)下,通过形成α - 螺旋接触随后进行疏水聚集的折叠途径变得更加重要。