Suppr超能文献

GraphVAMPNet,使用图神经网络和马尔可夫过程变分方法进行生物分子动力学建模。

GraphVAMPNet, using graph neural networks and variational approach to Markov processes for dynamical modeling of biomolecules.

机构信息

Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20824, USA.

Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA.

出版信息

J Chem Phys. 2022 May 14;156(18):184103. doi: 10.1063/5.0085607.

Abstract

Finding a low dimensional representation of data from long-timescale trajectories of biomolecular processes, such as protein folding or ligand-receptor binding, is of fundamental importance, and kinetic models, such as Markov modeling, have proven useful in describing the kinetics of these systems. Recently, an unsupervised machine learning technique called VAMPNet was introduced to learn the low dimensional representation and the linear dynamical model in an end-to-end manner. VAMPNet is based on the variational approach for Markov processes and relies on neural networks to learn the coarse-grained dynamics. In this paper, we combine VAMPNet and graph neural networks to generate an end-to-end framework to efficiently learn high-level dynamics and metastable states from the long-timescale molecular dynamics trajectories. This method bears the advantages of graph representation learning and uses graph message passing operations to generate an embedding for each datapoint, which is used in the VAMPNet to generate a coarse-grained dynamical model. This type of molecular representation results in a higher resolution and a more interpretable Markov model than the standard VAMPNet, enabling a more detailed kinetic study of the biomolecular processes. Our GraphVAMPNet approach is also enhanced with an attention mechanism to find the important residues for classification into different metastable states.

摘要

从生物分子过程(如蛋白质折叠或配体-受体结合)的长时轨迹中找到数据的低维表示,这一点非常重要,而动力学模型(如马尔可夫建模)已被证明可用于描述这些系统的动力学。最近,一种名为 VAMPNet 的无监督机器学习技术被引入,用于以端到端的方式学习低维表示和线性动力学模型。VAMPNet 基于马尔可夫过程的变分方法,并依赖神经网络来学习粗粒度动力学。在本文中,我们结合 VAMPNet 和图神经网络,生成一个端到端的框架,以便从长时分子动力学轨迹中高效地学习高级动力学和亚稳态。这种方法具有图表示学习的优势,并使用图消息传递操作为每个数据点生成一个嵌入,该嵌入用于 VAMPNet 生成粗粒度动力学模型。这种分子表示类型比标准 VAMPNet 产生更高分辨率和更可解释的马尔可夫模型,从而能够更详细地研究生物分子过程的动力学。我们的 GraphVAMPNet 方法还增强了注意力机制,以找到用于将不同亚稳态分类的重要残基。

相似文献

2
VAMPnets for deep learning of molecular kinetics.
Nat Commun. 2018 Jan 2;9(1):5. doi: 10.1038/s41467-017-02388-1.
4
Active Learning of the Conformational Ensemble of Proteins Using Maximum Entropy VAMPNets.
J Chem Theory Comput. 2023 Jul 25;19(14):4377-4388. doi: 10.1021/acs.jctc.3c00040. Epub 2023 Apr 7.
5
Information Bottleneck Approach for Markov Model Construction.
J Chem Theory Comput. 2024 Jun 25;20(12):5352-5367. doi: 10.1021/acs.jctc.4c00449. Epub 2024 Jun 10.
7
Coarse graining molecular dynamics with graph neural networks.
J Chem Phys. 2020 Nov 21;153(19):194101. doi: 10.1063/5.0026133.
8
Optimized parameter selection reveals trends in Markov state models for protein folding.
J Chem Phys. 2016 Nov 21;145(19):194103. doi: 10.1063/1.4967809.
9
DyVGRNN: DYnamic mixture Variational Graph Recurrent Neural Networks.
Neural Netw. 2023 Aug;165:596-610. doi: 10.1016/j.neunet.2023.05.048. Epub 2023 Jun 5.

引用本文的文献

1
Memory kernel minimization-based neural networks for discovering slow collective variables of biomolecular dynamics.
Nat Comput Sci. 2025 Jul;5(7):562-571. doi: 10.1038/s43588-025-00815-8. Epub 2025 Jun 10.
2
Molecular simulations of enzymatic phosphorylation of disordered proteins and their condensates.
Nat Commun. 2025 May 19;16(1):4649. doi: 10.1038/s41467-025-59676-4.
3
AMUSET-TICA: A Tensor-Based Approach for Identifying Slow Collective Variables in Biomolecular Dynamics.
J Chem Theory Comput. 2025 May 13;21(9):4855-4866. doi: 10.1021/acs.jctc.5c00076. Epub 2025 Apr 20.
6
Sampling Conformational Ensembles of Highly Dynamic Proteins via Generative Deep Learning.
Res Sq. 2024 Jun 28:rs.3.rs-4301803. doi: 10.21203/rs.3.rs-4301803/v1.
7
CoVAMPnet: Comparative Markov State Analysis for Studying Effects of Drug Candidates on Disordered Biomolecules.
JACS Au. 2024 May 28;4(6):2228-2245. doi: 10.1021/jacsau.4c00182. eCollection 2024 Jun 24.
9
GraphVAMPnets for uncovering slow collective variables of self-assembly dynamics.
J Chem Phys. 2023 Sep 7;159(9). doi: 10.1063/5.0158903.

本文引用的文献

1
A kinetic ensemble of the Alzheimer's Aβ peptide.
Nat Comput Sci. 2021 Jan;1(1):71-78. doi: 10.1038/s43588-020-00003-w. Epub 2021 Jan 14.
2
Progress in deep Markov state modeling: Coarse graining and experimental data restraints.
J Chem Phys. 2021 Dec 7;155(21):214106. doi: 10.1063/5.0064668.
4
Structure-based protein function prediction using graph convolutional networks.
Nat Commun. 2021 May 26;12(1):3168. doi: 10.1038/s41467-021-23303-9.
5
Coarse graining molecular dynamics with graph neural networks.
J Chem Phys. 2020 Nov 21;153(19):194101. doi: 10.1063/5.0026133.
6
Fast and Flexible Protein Design Using Deep Graph Neural Networks.
Cell Syst. 2020 Oct 21;11(4):402-411.e4. doi: 10.1016/j.cels.2020.08.016. Epub 2020 Sep 23.
8
Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials.
Nat Commun. 2019 Jun 17;10(1):2667. doi: 10.1038/s41467-019-10663-6.
9
Nonlinear discovery of slow molecular modes using state-free reversible VAMPnets.
J Chem Phys. 2019 Jun 7;150(21):214114. doi: 10.1063/1.5092521.
10
Variational selection of features for molecular kinetics.
J Chem Phys. 2019 May 21;150(19):194108. doi: 10.1063/1.5083040.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验