Linhananta Apichart, Boer Jesse, MacKay Ian
Department of Physics, Lakehead University, Thunder Bay, Ontario, Canada.
J Chem Phys. 2005 Mar 15;122(11):114901. doi: 10.1063/1.1874812.
The ultrafast-folding 20-residue Trp-cage protein is quickly becoming a new benchmark for molecular dynamics studies. Already several all-atom simulations have probed its equilibrium and kinetic properties. In this work an all-atom Go model is used to accurately represent the side-chain packing and native atomic contacts of the Trp-cage. The model reproduces the hallmark thermodynamics cooperativity of small proteins. Folding simulations observe that in the fast-folding dominant pathway, partial alpha-helical structure forms before hydrophobic core collapse. In the slow-folding secondary pathway, partial core collapse occurs before helical structure. The slow-folding rate of the secondary pathway is attributed to the loss of side-chain rotational freedom, due to the early core collapse, which impedes the helix formation. A major finding is the observation of a low-temperature kinetic intermediate stabilized by a salt bridge between residues Asp-9 and Arg-16. Similar observations [R. Zhou, Proc. Natl. Acad. Sci. U.S.A. 100, 13280 (2003)] were reported in a recent study using an all-atom model of the Trp-cage in explicit water, in which the salt-bridge stabilized intermediate was hypothesized to be the origin of the ultrafast-folding mechanism. A theoretical mutation that eliminates the Asp-9-Arg-16 salt bridge, but leaves the residues intact, is performed. Folding simulations of the mutant Trp-cage observe a two-state free-energy landscape with no kinetic intermediate and a significant decrease in the folding rate, in support of the hypothesis.
由20个氨基酸残基组成的超快折叠色氨酸笼形蛋白正迅速成为分子动力学研究的新基准。已经有几项全原子模拟研究了它的平衡和动力学性质。在这项工作中,使用了一个全原子Go模型来准确表示色氨酸笼形蛋白的侧链堆积和天然原子接触。该模型再现了小蛋白质标志性的热力学协同性。折叠模拟观察到,在快速折叠的主导途径中,部分α螺旋结构在疏水核心坍塌之前形成。在慢速折叠的次要途径中,部分核心坍塌发生在螺旋结构之前。次要途径的慢速折叠速率归因于由于早期核心坍塌导致的侧链旋转自由度的丧失,这阻碍了螺旋的形成。一个主要发现是观察到由Asp-9和Arg-16残基之间的盐桥稳定的低温动力学中间体。最近一项使用在明确水环境中的色氨酸笼形蛋白全原子模型的研究 [R. Zhou, Proc. Natl. Acad. Sci. U.S.A. 100, 13280 (2003)] 也报道了类似的观察结果,其中盐桥稳定的中间体被假设为超快折叠机制的起源。进行了一个理论突变,消除了Asp-9-Arg-16盐桥,但保留了这些残基。突变体色氨酸笼形蛋白的折叠模拟观察到一个没有动力学中间体的两态自由能景观,并且折叠速率显著降低,这支持了该假设。