Suppr超能文献

减压应激产生的微粒会导致中枢神经系统损伤,表现为神经垂体末端动作电位增宽。

Microparticles generated by decompression stress cause central nervous system injury manifested as neurohypophysial terminal action potential broadening.

机构信息

Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania;

出版信息

J Appl Physiol (1985). 2013 Nov;115(10):1481-6. doi: 10.1152/japplphysiol.00745.2013. Epub 2013 Sep 19.

Abstract

The study goal was to use membrane voltage changes during neurohypophysial action potential (AP) propagation as an index of nerve function to evaluate the role that circulating microparticles (MPs) play in causing central nervous system injury in response to decompression stress in a murine model. Mice studied 1 h following decompression from 790 kPa air pressure for 2 h exhibit a 45% broadening of the neurohypophysial AP. Broadening did not occur if mice were injected with the MP lytic agent polyethylene glycol telomere B immediately after decompression, were rendered thrombocytopenic, or were treated with an inhibitor of nitric oxide synthase-2 (iNOS) prior to decompression, or in knockout (KO) mice lacking myeloperoxidase or iNOS. If MPs were harvested from control (no decompression) mice and injected into naive mice, no AP broadening occurred, but AP broadening was observed with injections of equal numbers of MPs from either wild-type or iNOS KO mice subjected to decompression stress. Although not required for AP broadening, MPs from decompressed mice, but not control mice, exhibit NADPH oxidase activation. We conclude that inherent differences in MPs from decompressed mice, rather than elevated MPs numbers, mediate neurological injury and that a component of the perivascular response to MPs involves iNOS. Additional study is needed to determine the mechanism of AP broadening and also mechanisms for MP generation associated with exposure to elevated gas pressure.

摘要

本研究旨在利用神经垂体动作电位(AP)传播过程中的膜电压变化作为神经功能的指标,评估循环微粒(MPs)在减压应激引起中枢神经系统损伤中的作用。在减压 2 小时后,研究人员观察到从 790 kPa 气压减压 1 小时的小鼠的神经垂体 AP 宽度增加了 45%。如果在减压后立即给小鼠注射 MP 裂解剂聚乙二醇端粒 B、使血小板减少或在减压前用一氧化氮合酶-2(iNOS)抑制剂处理,或者在缺乏髓过氧化物酶或 iNOS 的敲除(KO)小鼠中,AP 不会变宽。如果从对照(未减压)小鼠中提取 MPs 并注射到未处理的小鼠中,AP 不会变宽,但如果注射来自经历减压应激的野生型或 iNOS KO 小鼠的等量 MPs,则会观察到 AP 变宽。虽然不需要 AP 变宽,但来自减压小鼠的 MPs 而非对照小鼠的 MPs 显示 NADPH 氧化酶激活。我们得出结论,来自减压小鼠的 MPs 之间的固有差异而不是 MPs 数量的增加介导了神经损伤,并且 MPs 对血管周围反应的一个组成部分涉及 iNOS。需要进一步研究来确定 AP 变宽的机制以及与暴露于高压气体相关的 MPs 生成的机制。

相似文献

1
Microparticles generated by decompression stress cause central nervous system injury manifested as neurohypophysial terminal action potential broadening.
J Appl Physiol (1985). 2013 Nov;115(10):1481-6. doi: 10.1152/japplphysiol.00745.2013. Epub 2013 Sep 19.
2
Intramicroparticle nitrogen dioxide is a bubble nucleation site leading to decompression-induced neutrophil activation and vascular injury.
J Appl Physiol (1985). 2013 Mar 1;114(5):550-8. doi: 10.1152/japplphysiol.01386.2012. Epub 2012 Dec 20.
3
Microparticle-induced vascular injury in mice following decompression is inhibited by hyperbaric oxygen: effects on microparticles and interleukin-1β.
J Appl Physiol (1985). 2019 Apr 1;126(4):1006-1014. doi: 10.1152/japplphysiol.01109.2018. Epub 2019 Feb 14.
4
Microparticles initiate decompression-induced neutrophil activation and subsequent vascular injuries.
J Appl Physiol (1985). 2011 Feb;110(2):340-51. doi: 10.1152/japplphysiol.00811.2010. Epub 2010 Oct 21.
5
Persistent neuroinflammation and functional deficits in a murine model of decompression sickness.
J Appl Physiol (1985). 2024 Jul 1;137(1):63-73. doi: 10.1152/japplphysiol.00097.2024. Epub 2024 Apr 25.
6
Carbon monoxide inhalation increases microparticles causing vascular and CNS dysfunction.
Toxicol Appl Pharmacol. 2013 Dec 1;273(2):410-7. doi: 10.1016/j.taap.2013.09.019. Epub 2013 Sep 30.
7
Microparticle formation by platelets exposed to high gas pressures - An oxidative stress response.
Free Radic Biol Med. 2016 Dec;101:154-162. doi: 10.1016/j.freeradbiomed.2016.10.010. Epub 2016 Oct 15.
8
Neuroinflammation with increased glymphatic flow in a murine model of decompression sickness.
J Neurophysiol. 2023 Mar 1;129(3):662-671. doi: 10.1152/jn.00005.2023. Epub 2023 Feb 8.
10
Microparticle enlargement and altered surface proteins after air decompression are associated with inflammatory vascular injuries.
J Appl Physiol (1985). 2012 Jan;112(1):204-11. doi: 10.1152/japplphysiol.00953.2011. Epub 2011 Sep 29.

引用本文的文献

1
Case report: Biphasic autonomic response in decompression sickness: HRV and sinoatrial findings.
Front Physiol. 2025 Apr 29;16:1605779. doi: 10.3389/fphys.2025.1605779. eCollection 2025.
2
Inflammatory responses to acute carbon monoxide poisoning and the role of plasma gelsolin.
Sci Adv. 2025 Feb 7;11(6):eado9751. doi: 10.1126/sciadv.ado9751.
3
Inert Gas Mild Pressure Action on Healthy Humans: The "IPA" Study.
Int J Mol Sci. 2024 Nov 10;25(22):12067. doi: 10.3390/ijms252212067.
7
Elevations of Extracellular Vesicles and Inflammatory Biomarkers in Closed Circuit SCUBA Divers.
Int J Mol Sci. 2023 Mar 22;24(6):5969. doi: 10.3390/ijms24065969.
8
Neuroinflammation with increased glymphatic flow in a murine model of decompression sickness.
J Neurophysiol. 2023 Mar 1;129(3):662-671. doi: 10.1152/jn.00005.2023. Epub 2023 Feb 8.
10
Astrocyte-derived microparticles initiate a neuroinflammatory cycle due to carbon monoxide poisoning.
Brain Behav Immun Health. 2021 Nov 27;18:100398. doi: 10.1016/j.bbih.2021.100398. eCollection 2021 Dec.

本文引用的文献

1
Bubbles, microparticles, and neutrophil activation: changes with exercise level and breathing gas during open-water SCUBA diving.
J Appl Physiol (1985). 2013 May 15;114(10):1396-405. doi: 10.1152/japplphysiol.00106.2013. Epub 2013 Mar 14.
2
High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation.
Cardiovasc Res. 2013 Apr 1;98(1):94-106. doi: 10.1093/cvr/cvt013. Epub 2013 Jan 22.
3
Intramicroparticle nitrogen dioxide is a bubble nucleation site leading to decompression-induced neutrophil activation and vascular injury.
J Appl Physiol (1985). 2013 Mar 1;114(5):550-8. doi: 10.1152/japplphysiol.01386.2012. Epub 2012 Dec 20.
4
Blood platelet-derived microparticles release and bubble formation after an open-sea air dive.
Appl Physiol Nutr Metab. 2012 Oct;37(5):888-92. doi: 10.1139/h2012-067. Epub 2012 Jun 26.
5
Microparticle production, neutrophil activation, and intravascular bubbles following open-water SCUBA diving.
J Appl Physiol (1985). 2012 Apr;112(8):1268-78. doi: 10.1152/japplphysiol.01305.2011. Epub 2012 Feb 9.
6
STAT3 signaling after traumatic brain injury.
J Neurochem. 2012 Mar;120(5):710-20. doi: 10.1111/j.1471-4159.2011.07610.x. Epub 2012 Jan 31.
7
Microparticle enlargement and altered surface proteins after air decompression are associated with inflammatory vascular injuries.
J Appl Physiol (1985). 2012 Jan;112(1):204-11. doi: 10.1152/japplphysiol.00953.2011. Epub 2011 Sep 29.
8
Nox2 B-loop peptide, Nox2ds, specifically inhibits the NADPH oxidase Nox2.
Free Radic Biol Med. 2011 Sep 15;51(6):1116-25. doi: 10.1016/j.freeradbiomed.2011.04.025. Epub 2011 Apr 17.
9
Decompression illness.
Lancet. 2011 Jan 8;377(9760):153-64. doi: 10.1016/S0140-6736(10)61085-9.
10
Microparticles initiate decompression-induced neutrophil activation and subsequent vascular injuries.
J Appl Physiol (1985). 2011 Feb;110(2):340-51. doi: 10.1152/japplphysiol.00811.2010. Epub 2010 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验