Shockley Keith R
1The National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
J Biomol Screen. 2014 Mar;19(3):344-53. doi: 10.1177/1087057113505325. Epub 2013 Sep 20.
Quantitative high-throughput screening (qHTS) experiments can simultaneously produce concentration-response profiles for thousands of chemicals. In a typical qHTS study, a large chemical library is subjected to a primary screen to identify candidate hits for secondary screening, validation studies, or prediction modeling. Different algorithms, usually based on the Hill equation logistic model, have been used to classify compounds as active or inactive (or inconclusive). However, observed concentration-response activity relationships may not adequately fit a sigmoidal curve. Furthermore, it is unclear how to prioritize chemicals for follow-up studies given the large uncertainties that often accompany parameter estimates from nonlinear models. Weighted Shannon entropy can address these concerns by ranking compounds according to profile-specific statistics derived from estimates of the probability mass distribution of response at the tested concentration levels. This strategy can be used to rank all tested chemicals in the absence of a prespecified model structure, or the approach can complement existing activity call algorithms by ranking the returned candidate hits. The weighted entropy approach was evaluated here using data simulated from the Hill equation model. The procedure was then applied to a chemical genomics profiling data set interrogating compounds for androgen receptor agonist activity.
定量高通量筛选(qHTS)实验能够同时生成数千种化学物质的浓度-反应曲线。在典型的qHTS研究中,一个大型化学文库要经过一次初筛,以识别出可用于二次筛选、验证研究或预测建模的候选活性物质。通常基于希尔方程逻辑模型的不同算法,已被用于将化合物分类为活性或非活性(或不确定)。然而,观察到的浓度-反应活性关系可能并不完全符合S形曲线。此外,鉴于非线性模型的参数估计常常存在很大不确定性,目前尚不清楚如何对用于后续研究的化学物质进行优先级排序。加权香农熵可以通过根据从测试浓度水平下反应的概率质量分布估计得出的特定曲线统计数据对化合物进行排名,从而解决这些问题。在没有预先指定模型结构的情况下,该策略可用于对所有测试的化学物质进行排名,或者该方法可以通过对返回的候选活性物质进行排名来补充现有的活性判定算法。本文使用从希尔方程模型模拟的数据对加权熵方法进行了评估。然后将该程序应用于一个化学基因组学分析数据集,该数据集用于研究化合物的雄激素受体激动剂活性。