Suppr超能文献

定量高通量筛选数据分析:挑战与最新进展

Quantitative high-throughput screening data analysis: challenges and recent advances.

作者信息

Shockley Keith R

机构信息

Biostatistics and Computational Biology Branch, The National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.

出版信息

Drug Discov Today. 2015 Mar;20(3):296-300. doi: 10.1016/j.drudis.2014.10.005. Epub 2014 Oct 23.

Abstract

In vitro HTS holds much potential to advance drug discovery and provide cell-based alternatives for toxicity testing. In quantitative HTS, concentration-response data can be generated simultaneously for thousands of different compounds and mixtures. However, nonlinear modeling in these multiple-concentration assays presents important statistical challenges that are not problematic for linear models. The uncertainty of parameter estimates obtained from the widely used Hill equation model can be extremely large when using standard designs. Failure to properly consider standard errors of these parameter estimates would greatly hinder chemical genomics and toxicity testing efforts. In this light, optimal study designs should be developed to improve nonlinear parameter estimation; or alternative approaches with reliable performance characteristics should be used to describe concentration-response profiles.

摘要

体外高通量筛选在推进药物发现以及为毒性测试提供基于细胞的替代方法方面具有很大潜力。在定量高通量筛选中,可以同时为数千种不同的化合物和混合物生成浓度-反应数据。然而,这些多浓度测定中的非线性建模带来了重要的统计挑战,而线性模型则不存在这些问题。使用标准设计时,从广泛使用的希尔方程模型获得的参数估计值的不确定性可能极大。未能正确考虑这些参数估计值的标准误差将极大地阻碍化学基因组学和毒性测试工作。有鉴于此,应开发最佳研究设计以改进非线性参数估计;或者应使用具有可靠性能特征的替代方法来描述浓度-反应曲线。

相似文献

1
Quantitative high-throughput screening data analysis: challenges and recent advances.定量高通量筛选数据分析:挑战与最新进展
Drug Discov Today. 2015 Mar;20(3):296-300. doi: 10.1016/j.drudis.2014.10.005. Epub 2014 Oct 23.
6
8
Novel trends in high-throughput screening.高通量筛选的新趋势。
Curr Opin Pharmacol. 2009 Oct;9(5):580-8. doi: 10.1016/j.coph.2009.08.004. Epub 2009 Sep 21.
10
Uncertainty quantification in ToxCast high throughput screening.ToxCast 高通量筛选中的不确定性量化。
PLoS One. 2018 Jul 25;13(7):e0196963. doi: 10.1371/journal.pone.0196963. eCollection 2018.

引用本文的文献

3
AI in drug discovery and its clinical relevance.人工智能在药物研发中的应用及其临床意义。
Heliyon. 2023 Jul;9(7):e17575. doi: 10.1016/j.heliyon.2023.e17575. Epub 2023 Jun 26.
4
Accounting for Artifacts in High-Throughput Toxicity Assays.高通量毒性检测中的伪像分析。
Methods Mol Biol. 2022;2474:155-167. doi: 10.1007/978-1-0716-2213-1_15.
6
Rethinking drug design in the artificial intelligence era.人工智能时代的药物设计再思考。
Nat Rev Drug Discov. 2020 May;19(5):353-364. doi: 10.1038/s41573-019-0050-3. Epub 2019 Dec 4.
7
Quality Control of Quantitative High Throughput Screening Data.定量高通量筛选数据的质量控制
Front Genet. 2019 May 9;10:387. doi: 10.3389/fgene.2019.00387. eCollection 2019.
8
Uncertainty quantification in ToxCast high throughput screening.ToxCast 高通量筛选中的不确定性量化。
PLoS One. 2018 Jul 25;13(7):e0196963. doi: 10.1371/journal.pone.0196963. eCollection 2018.

本文引用的文献

1
2
Inconsistency in large pharmacogenomic studies.大型药物基因组学研究中的不一致性。
Nature. 2013 Dec 19;504(7480):389-93. doi: 10.1038/nature12831. Epub 2013 Nov 27.
4
8
Improving the human hazard characterization of chemicals: a Tox21 update.改进化学物质的人类危害特征描述:Tox21 更新。
Environ Health Perspect. 2013 Jul;121(7):756-65. doi: 10.1289/ehp.1205784. Epub 2013 Apr 19.
9
Incorporating biological, chemical, and toxicological knowledge into predictive models of toxicity.
Toxicol Sci. 2012 Dec;130(2):440-1; author reply 442-3. doi: 10.1093/toxsci/kfs281. Epub 2012 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验