Suppr超能文献

表面增强拉曼光谱定量分析的模型和方法。

Models and methods for quantitative analysis of surface-enhanced Raman spectra.

出版信息

IEEE J Biomed Health Inform. 2014 Mar;18(2):525-36. doi: 10.1109/JBHI.2013.2281947.

Abstract

The quantitative analysis of surface-enhanced Raman spectra using scattering nanoparticles has shown the potential and promising applications in in vivo molecular imaging. The diverse approaches have been used for quantitative analysis of Raman pectra information, which can be categorized as direct classical least squares models, full spectrum multivariate calibration models, selected multivariate calibration models, and latent variable regression (LVR) models. However, the working principle of these methods in the Raman spectra application remains poorly understood and a clear picture of the overall performance of each model is missing. Based on the characteristics of the Raman spectra, in this paper, we first provide the theoretical foundation of the aforementioned commonly used models and show why the LVR models are more suitable for quantitative analysis of the Raman spectra. Then, we demonstrate the fundamental connections and differences between different LVR methods, such as principal component regression, reduced-rank regression, partial least square regression (PLSR), canonical correlation regression, and robust canonical analysis, by comparing their objective functions and constraints.We further prove that PLSR is literally a blend of multivariate calibration and feature extraction model that relates concentrations of nanotags to spectrum intensity. These features (a.k.a. latent variables) satisfy two purposes: the best representation of the predictor matrix and correlation with the response matrix. These illustrations give a new understanding of the traditional PLSR and explain why PLSR exceeds other methods in quantitative analysis of the Raman spectra problem. In the end, all the methods are tested on the Raman spectra datasets with different evaluation criteria to evaluate their performance.

摘要

利用散射纳米粒子对表面增强拉曼光谱进行定量分析,已显示出在体内分子成像中具有潜力和广阔的应用前景。已经提出了多种方法来进行拉曼光谱信息的定量分析,可以将其归类为直接经典最小二乘模型、全谱多元校准模型、选择多元校准模型和潜在变量回归 (LVR) 模型。然而,这些方法在拉曼光谱应用中的工作原理仍未被充分理解,并且每个模型的整体性能也没有清晰的图像。基于拉曼光谱的特点,本文首先提供了上述常用模型的理论基础,并展示了为什么 LVR 模型更适合拉曼光谱的定量分析。然后,我们通过比较不同 LVR 方法的目标函数和约束条件,展示了不同 LVR 方法(如主成分回归、降秩回归、偏最小二乘回归 (PLSR)、典型相关回归和稳健典型分析)之间的基本联系和差异。我们进一步证明 PLSR 实际上是多元校准和特征提取模型的融合,它将纳米标签的浓度与光谱强度联系起来。这些特征(又名潜在变量)满足两个目的:最佳表示预测器矩阵和与响应矩阵的相关性。这些说明为传统 PLSR 提供了新的理解,并解释了为什么 PLSR 在拉曼光谱定量分析问题上优于其他方法。最后,我们使用不同的评价标准在拉曼光谱数据集上测试了所有方法,以评估它们的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验