Li Shuo, Nyagilo James O, Dave Digant P, Wang Wei, Zhang Baoju, Gao Jean
Int J Data Min Bioinform. 2015;11(2):223-43. doi: 10.1504/ijdmb.2015.066768.
With the latest development of Surface-Enhanced Raman Scattering (SERS) technique, quantitative analysis of Raman spectra has shown the potential and promising trend of development in vivo molecular imaging. Partial Least Squares Regression (PLSR) is state-of-the-art method. But it only relies on training samples, which makes it difficult to incorporate complex domain knowledge. Based on probabilistic Principal Component Analysis (PCA) and probabilistic curve fitting idea, we propose a probabilistic PLSR (PPLSR) model and an Estimation Maximisation (EM) algorithm for estimating parameters. This model explains PLSR from a probabilistic viewpoint, describes its essential meaning and provides a foundation to develop future Bayesian nonparametrics models. Two real Raman spectra datasets were used to evaluate this model, and experimental results show its effectiveness.
随着表面增强拉曼散射(SERS)技术的最新发展,拉曼光谱的定量分析已显示出在体内分子成像方面的发展潜力和前景。偏最小二乘回归(PLSR)是最先进的方法。但它仅依赖于训练样本,这使得纳入复杂的领域知识变得困难。基于概率主成分分析(PCA)和概率曲线拟合思想,我们提出了一种概率PLSR(PPLSR)模型和一种用于估计参数的期望最大化(EM)算法。该模型从概率角度解释了PLSR,描述了其本质含义,并为开发未来的贝叶斯非参数模型提供了基础。使用两个真实的拉曼光谱数据集对该模型进行评估,实验结果表明了其有效性。