Li Bo, Zhao Yanxiang
Department of Mathematics and the NSF Center for Theoretical Biological Physics, University of California, San Diego, 9500 Gilman Drive, Mail code: 0112, La Jolla, CA 92093-0112, USA.
SIAM J Appl Math. 2013;73(1):1-23. doi: 10.1137/120883426.
Central in a variational implicit-solvent description of biomolecular solvation is an effective free-energy functional of the solute atomic positions and the solute-solvent interface (i.e., the dielectric boundary). The free-energy functional couples together the solute molecular mechanical interaction energy, the solute-solvent interfacial energy, the solute-solvent van der Waals interaction energy, and the electrostatic energy. In recent years, the sharp-interface version of the variational implicit-solvent model has been developed and used for numerical computations of molecular solvation. In this work, we propose a diffuse-interface version of the variational implicit-solvent model with solute molecular mechanics. We also analyze both the sharp-interface and diffuse-interface models. We prove the existence of free-energy minimizers and obtain their bounds. We also prove the convergence of the diffuse-interface model to the sharp-interface model in the sense of Γ-convergence. We further discuss properties of sharp-interface free-energy minimizers, the boundary conditions and the coupling of the Poisson-Boltzmann equation in the diffuse-interface model, and the convergence of forces from diffuse-interface to sharp-interface descriptions. Our analysis relies on the previous works on the problem of minimizing surface areas and on our observations on the coupling between solute molecular mechanical interactions with the continuum solvent. Our studies justify rigorously the self consistency of the proposed diffuse-interface variational models of implicit solvation.
在生物分子溶剂化的变分隐式溶剂描述中,核心是溶质原子位置和溶质 - 溶剂界面(即介电边界)的有效自由能泛函。该自由能泛函将溶质分子力学相互作用能、溶质 - 溶剂界面能、溶质 - 溶剂范德华相互作用能和静电能耦合在一起。近年来,变分隐式溶剂模型的尖锐界面版本已被开发并用于分子溶剂化的数值计算。在这项工作中,我们提出了一种具有溶质分子力学的变分隐式溶剂模型的扩散界面版本。我们还分析了尖锐界面模型和扩散界面模型。我们证明了自由能极小值的存在性并获得了它们的界。我们还在Γ - 收敛的意义上证明了扩散界面模型向尖锐界面模型的收敛性。我们进一步讨论了尖锐界面自由能极小值的性质、扩散界面模型中泊松 - 玻尔兹曼方程的边界条件和耦合,以及从扩散界面描述到尖锐界面描述的力的收敛性。我们的分析依赖于先前关于最小化表面积问题的工作以及我们对溶质分子力学相互作用与连续溶剂之间耦合的观察。我们的研究严格证明了所提出的隐式溶剂化扩散界面变分模型的自洽性。