Suppr超能文献

溶质分子力学变分隐式溶剂化:从扩散界面到尖锐界面模型

Variational Implicit Solvation with Solute Molecular Mechanics: From Diffuse-Interface to Sharp-Interface Models.

作者信息

Li Bo, Zhao Yanxiang

机构信息

Department of Mathematics and the NSF Center for Theoretical Biological Physics, University of California, San Diego, 9500 Gilman Drive, Mail code: 0112, La Jolla, CA 92093-0112, USA.

出版信息

SIAM J Appl Math. 2013;73(1):1-23. doi: 10.1137/120883426.

Abstract

Central in a variational implicit-solvent description of biomolecular solvation is an effective free-energy functional of the solute atomic positions and the solute-solvent interface (i.e., the dielectric boundary). The free-energy functional couples together the solute molecular mechanical interaction energy, the solute-solvent interfacial energy, the solute-solvent van der Waals interaction energy, and the electrostatic energy. In recent years, the sharp-interface version of the variational implicit-solvent model has been developed and used for numerical computations of molecular solvation. In this work, we propose a diffuse-interface version of the variational implicit-solvent model with solute molecular mechanics. We also analyze both the sharp-interface and diffuse-interface models. We prove the existence of free-energy minimizers and obtain their bounds. We also prove the convergence of the diffuse-interface model to the sharp-interface model in the sense of Γ-convergence. We further discuss properties of sharp-interface free-energy minimizers, the boundary conditions and the coupling of the Poisson-Boltzmann equation in the diffuse-interface model, and the convergence of forces from diffuse-interface to sharp-interface descriptions. Our analysis relies on the previous works on the problem of minimizing surface areas and on our observations on the coupling between solute molecular mechanical interactions with the continuum solvent. Our studies justify rigorously the self consistency of the proposed diffuse-interface variational models of implicit solvation.

摘要

在生物分子溶剂化的变分隐式溶剂描述中,核心是溶质原子位置和溶质 - 溶剂界面(即介电边界)的有效自由能泛函。该自由能泛函将溶质分子力学相互作用能、溶质 - 溶剂界面能、溶质 - 溶剂范德华相互作用能和静电能耦合在一起。近年来,变分隐式溶剂模型的尖锐界面版本已被开发并用于分子溶剂化的数值计算。在这项工作中,我们提出了一种具有溶质分子力学的变分隐式溶剂模型的扩散界面版本。我们还分析了尖锐界面模型和扩散界面模型。我们证明了自由能极小值的存在性并获得了它们的界。我们还在Γ - 收敛的意义上证明了扩散界面模型向尖锐界面模型的收敛性。我们进一步讨论了尖锐界面自由能极小值的性质、扩散界面模型中泊松 - 玻尔兹曼方程的边界条件和耦合,以及从扩散界面描述到尖锐界面描述的力的收敛性。我们的分析依赖于先前关于最小化表面积问题的工作以及我们对溶质分子力学相互作用与连续溶剂之间耦合的观察。我们的研究严格证明了所提出的隐式溶剂化扩散界面变分模型的自洽性。

相似文献

2
DIFFUSED SOLUTE-SOLVENT INTERFACE WITH POISSON-BOLTZMANN ELECTROSTATICS: FREE-ENERGY VARIATION AND SHARP-INTERFACE LIMIT.
SIAM J Appl Math. 2015;75(5):2072-2092. doi: 10.1137/15M100701X. Epub 2015 Sep 15.
5
Coupling Monte Carlo, Variational Implicit Solvation, and Binary Level-Set for Simulations of Biomolecular Binding.
J Chem Theory Comput. 2021 Apr 13;17(4):2465-2478. doi: 10.1021/acs.jctc.0c01109. Epub 2021 Mar 2.
6
LS-VISM: A software package for analysis of biomolecular solvation.
J Comput Chem. 2015 May 30;36(14):1047-59. doi: 10.1002/jcc.23890. Epub 2015 Mar 12.
7
Variational approach for nonpolar solvation analysis.
J Chem Phys. 2012 Aug 28;137(8):084101. doi: 10.1063/1.4745084.
8
Application of the level-set method to the implicit solvation of nonpolar molecules.
J Chem Phys. 2007 Aug 28;127(8):084503. doi: 10.1063/1.2757169.
9
Differential geometry based solvation model II: Lagrangian formulation.
J Math Biol. 2011 Dec;63(6):1139-200. doi: 10.1007/s00285-011-0402-z. Epub 2011 Jan 30.
10
Quantum dynamics in continuum for proton transport II: Variational solvent-solute interface.
Int J Numer Method Biomed Eng. 2012 Jan;28(1):25-51. doi: 10.1002/cnm.1458. Epub 2011 Aug 9.

引用本文的文献

1
DIFFUSED SOLUTE-SOLVENT INTERFACE WITH POISSON-BOLTZMANN ELECTROSTATICS: FREE-ENERGY VARIATION AND SHARP-INTERFACE LIMIT.
SIAM J Appl Math. 2015;75(5):2072-2092. doi: 10.1137/15M100701X. Epub 2015 Sep 15.
3
Pattern formation by phase-field relaxation of bending energy with fixed surface area and volume.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Sep;90(3):033308. doi: 10.1103/PhysRevE.90.033308. Epub 2014 Sep 17.
4
Polarity mechanisms such as contact inhibition of locomotion regulate persistent rotational motion of mammalian cells on micropatterns.
Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):14770-5. doi: 10.1073/pnas.1414498111. Epub 2014 Sep 25.
5
Phase-field approach to implicit solvation of biomolecules with Coulomb-field approximation.
J Chem Phys. 2013 Jul 14;139(2):024111. doi: 10.1063/1.4812839.

本文引用的文献

2
Yukawa-Field Approximation of Electrostatic Free Energy and Dielectric Boundary Force.
Nonlinearity. 2011 Nov;24(11):3215. doi: 10.1088/0951-7715/24/11/011.
3
Are hydrodynamic interactions important in the kinetics of hydrophobic collapse?
J Phys Chem B. 2012 Sep 20;116(37):11537-44. doi: 10.1021/jp307466r. Epub 2012 Sep 10.
4
Level-Set Variational Implicit-Solvent Modeling of Biomolecules with the Coulomb-Field Approximation.
J Chem Theory Comput. 2012 Feb 14;8(2):386-397. doi: 10.1021/ct200647j. Epub 2011 Dec 19.
5
Level-Set Minimization of Potential Controlled Hadwiger Valuations for Molecular Solvation.
J Comput Phys. 2010 Nov 1;229(22):8497-8510. doi: 10.1016/j.jcp.2010.07.032.
6
Differential geometry based solvation model I: Eulerian formulation.
J Comput Phys. 2010 Nov 1;229(22):8231-8258. doi: 10.1016/j.jcp.2010.06.036.
7
Computational model for cell morphodynamics.
Phys Rev Lett. 2010 Sep 3;105(10):108104. doi: 10.1103/PhysRevLett.105.108104. Epub 2010 Sep 2.
9
Dewetting-controlled binding of ligands to hydrophobic pockets.
Phys Rev Lett. 2009 Oct 30;103(18):187801. doi: 10.1103/PhysRevLett.103.187801.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验