Sun Hui, Wen Jiayi, Zhao Yanxiang, Li Bo, McCammon J Andrew
Department of Mathematics, University of California, San Diego, 9500 Gilman Drive, Mail Code 0112. La Jolla, California 92093-0112, USA.
Department of Mathematics, the George Washington University, Monroe Hall, 2115 G St. NW, Washington, DC 20052, USA.
J Chem Phys. 2015 Dec 28;143(24):243110. doi: 10.1063/1.4932336.
Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.
基于介电边界的隐式溶剂模型能够有效地描述水性溶剂的粗粒化效应,尤其是静电效应。近年来,一种新的此类模型——变分隐式溶剂模型(VISM)[Dzubiella、Swanson和McCammon,《物理评论快报》96,087802(2006年)及《化学物理杂志》124,084905(2006年)]取得了初步成功,它能够捕捉多种干态和湿态水合状态,描述疏水相互作用中的微妙静电效应,并对溶剂化自由能进行定性良好的估计。在此,我们开发了一种相场VISM来处理带电分子在水性溶剂中的溶剂化问题,以增加更多的灵活性。在这种方法中,一个稳定的平衡分子系统由一个相场来描述,该相场在溶质区域取一个恒定值,在溶剂区域取一个不同的恒定值,并在代表模糊溶质 - 溶剂界面或介电边界的薄过渡层上平滑地改变其值。这样的相场使一个有效的溶剂化自由能泛函最小化,该泛函由溶质 - 溶剂界面能、溶质 - 溶剂范德华相互作用能以及由泊松 - 玻尔兹曼理论描述的静电自由能组成。我们将我们的模型和方法应用于单离子、两个平行板以及蛋白质复合物BphC和p53/MDM2的溶剂化,以在不同层面展示我们方法的能力和效率。通过一个弥散的介电边界,我们的新方法能够描述溶质 - 溶剂界面区域的介电不对称性。我们的理论是基于严格的数学研究发展而来的,并且也与Lum - Chandler - Weeks理论(1999年)相关。我们讨论了这些联系以及我们理论和方法的可能扩展。