Suppr超能文献

用于计算平均扩散张量的高效递归算法及其在DTI分割中的应用

Efficient Recursive Algorithms for Computing the Mean Diffusion Tensor and Applications to DTI Segmentation.

作者信息

Cheng Guang, Salehian Hesamoddin, Vemuri Baba C

出版信息

Comput Vis ECCV. 2012;7578:390-401. doi: 10.1007/978-3-642-33786-4_29.

Abstract

Computation of the mean of a collection of symmetric positive definite (SPD) matrices is a fundamental ingredient of many algorithms in diffusion tensor image (DTI) processing. For instance, in DTI segmentation, clustering, etc. In this paper, we present novel recursive algorithms for computing the mean of a set of diffusion tensors using several distance/divergence measures commonly used in DTI segmentation and clustering such as the Riemannian distance and symmetrized Kullback-Leibler divergence. To the best of our knowledge, to date, there are no recursive algorithms for computing the mean using these measures in literature. Recursive algorithms lead to a gain in computation time of several orders in magnitude over existing non-recursive algorithms. The key contributions of this paper are: (i) we present novel theoretical results on a recursive estimator for Karcher expectation in the space of SPD matrices, which in effect is a proof of the law of large numbers (with some restrictions) for the manifold of SPD matrices. (ii) We also present a recursive version of the symmetrized KL-divergence for computing the mean of a collection of SPD matrices. (iii) We present comparative timing results for computing the mean of a group of SPD matrices (diffusion tensors) depicting the gains in compute time using the proposed recursive algorithms over existing non-recursive counter parts. Finally, we also show results on gains in compute times obtained by applying these recursive algorithms to the task of DTI segmentation.

摘要

计算一组对称正定(SPD)矩阵的均值是扩散张量图像(DTI)处理中许多算法的基本组成部分。例如,在DTI分割、聚类等中。在本文中,我们提出了新颖的递归算法,用于使用DTI分割和聚类中常用的几种距离/散度度量(如黎曼距离和对称化的库尔贝克 - 莱布勒散度)来计算一组扩散张量的均值。据我们所知,迄今为止,文献中还没有使用这些度量来计算均值的递归算法。与现有的非递归算法相比,递归算法在计算时间上有几个数量级的提升。本文的关键贡献在于:(i)我们给出了关于SPD矩阵空间中卡尔彻期望的递归估计器的新颖理论结果,这实际上是对SPD矩阵流形的大数定律(有一些限制)的证明。(ii)我们还提出了用于计算一组SPD矩阵均值的对称化KL散度的递归版本。(iii)我们给出了计算一组SPD矩阵(扩散张量)均值的比较计时结果,展示了使用所提出的递归算法相对于现有的非递归对应算法在计算时间上的提升。最后,我们还展示了将这些递归算法应用于DTI分割任务时在计算时间上的提升结果。

相似文献

2
Recursive Estimation of the Stein Center of SPD Matrices & its Applications.
Proc IEEE Int Conf Comput Vis. 2013 Dec:1793-1800. doi: 10.1109/ICCV.2013.225.
3
DTI segmentation using an information theoretic tensor dissimilarity measure.
IEEE Trans Med Imaging. 2005 Oct;24(10):1267-77. doi: 10.1109/TMI.2005.854516.
4
DTI segmentation by statistical surface evolution.
IEEE Trans Med Imaging. 2006 Jun;25(6):685-700. doi: 10.1109/tmi.2006.873299.
5
A robust variational approach for simultaneous smoothing and estimation of DTI.
Neuroimage. 2013 Feb 15;67:33-41. doi: 10.1016/j.neuroimage.2012.11.012. Epub 2012 Nov 17.
6
Total Bregman divergence and its applications to DTI analysis.
IEEE Trans Med Imaging. 2011 Feb;30(2):475-83. doi: 10.1109/TMI.2010.2086464. Epub 2010 Oct 14.
8
Approximate joint diagonalization and geometric mean of symmetric positive definite matrices.
PLoS One. 2015 Apr 28;10(4):e0121423. doi: 10.1371/journal.pone.0121423. eCollection 2014.
9
Bayesian Nonparametric Clustering for Positive Definite Matrices.
IEEE Trans Pattern Anal Mach Intell. 2016 May;38(5):862-74. doi: 10.1109/TPAMI.2015.2456903.
10
ManifoldNet: A Deep Neural Network for Manifold-Valued Data With Applications.
IEEE Trans Pattern Anal Mach Intell. 2022 Feb;44(2):799-810. doi: 10.1109/TPAMI.2020.3003846. Epub 2022 Jan 7.

引用本文的文献

1
Dilated Convolutional Neural Networks for Sequential Manifold-valued Data.
Proc IEEE Int Conf Comput Vis. 2019 Oct-Nov;2019:10620-10630. doi: 10.1109/iccv.2019.01072. Epub 2020 Feb 27.
2
Statistical model for dynamically-changing correlation matrices with application to brain connectivity.
J Neurosci Methods. 2020 Feb 1;331:108480. doi: 10.1016/j.jneumeth.2019.108480. Epub 2019 Nov 21.
3
iPGA: incremental principal geodesic analysis with applications to movement disorder classification.
Med Image Comput Comput Assist Interv. 2014;17(Pt 2):765-72. doi: 10.1007/978-3-319-10470-6_95.
4
Recursive Estimation of the Stein Center of SPD Matrices & its Applications.
Proc IEEE Int Conf Comput Vis. 2013 Dec:1793-1800. doi: 10.1109/ICCV.2013.225.

本文引用的文献

1
A UNIFIED FRAMEWORK FOR ESTIMATING DIFFUSION TENSORS OF ANY ORDER WITH SYMMETRIC POSITIVE-DEFINITE CONSTRAINTS.
Proc IEEE Int Symp Biomed Imaging. 2010 Apr 14:1385-1388. doi: 10.1109/ISBI.2010.5490256.
2
Total Bregman divergence and its applications to DTI analysis.
IEEE Trans Med Imaging. 2011 Feb;30(2):475-83. doi: 10.1109/TMI.2010.2086464. Epub 2010 Oct 14.
4
Active contours without edges.
IEEE Trans Image Process. 2001;10(2):266-77. doi: 10.1109/83.902291.
6
Segmentation of thalamic nuclei from DTI using spectral clustering.
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):807-14. doi: 10.1007/11866763_99.
7
Log-Euclidean metrics for fast and simple calculus on diffusion tensors.
Magn Reson Med. 2006 Aug;56(2):411-21. doi: 10.1002/mrm.20965.
8
DTI segmentation by statistical surface evolution.
IEEE Trans Med Imaging. 2006 Jun;25(6):685-700. doi: 10.1109/tmi.2006.873299.
9
DTI segmentation using an information theoretic tensor dissimilarity measure.
IEEE Trans Med Imaging. 2005 Oct;24(10):1267-77. doi: 10.1109/TMI.2005.854516.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验