Cheng Guang, Salehian Hesamoddin, Vemuri Baba C
Comput Vis ECCV. 2012;7578:390-401. doi: 10.1007/978-3-642-33786-4_29.
Computation of the mean of a collection of symmetric positive definite (SPD) matrices is a fundamental ingredient of many algorithms in diffusion tensor image (DTI) processing. For instance, in DTI segmentation, clustering, etc. In this paper, we present novel recursive algorithms for computing the mean of a set of diffusion tensors using several distance/divergence measures commonly used in DTI segmentation and clustering such as the Riemannian distance and symmetrized Kullback-Leibler divergence. To the best of our knowledge, to date, there are no recursive algorithms for computing the mean using these measures in literature. Recursive algorithms lead to a gain in computation time of several orders in magnitude over existing non-recursive algorithms. The key contributions of this paper are: (i) we present novel theoretical results on a recursive estimator for Karcher expectation in the space of SPD matrices, which in effect is a proof of the law of large numbers (with some restrictions) for the manifold of SPD matrices. (ii) We also present a recursive version of the symmetrized KL-divergence for computing the mean of a collection of SPD matrices. (iii) We present comparative timing results for computing the mean of a group of SPD matrices (diffusion tensors) depicting the gains in compute time using the proposed recursive algorithms over existing non-recursive counter parts. Finally, we also show results on gains in compute times obtained by applying these recursive algorithms to the task of DTI segmentation.
计算一组对称正定(SPD)矩阵的均值是扩散张量图像(DTI)处理中许多算法的基本组成部分。例如,在DTI分割、聚类等中。在本文中,我们提出了新颖的递归算法,用于使用DTI分割和聚类中常用的几种距离/散度度量(如黎曼距离和对称化的库尔贝克 - 莱布勒散度)来计算一组扩散张量的均值。据我们所知,迄今为止,文献中还没有使用这些度量来计算均值的递归算法。与现有的非递归算法相比,递归算法在计算时间上有几个数量级的提升。本文的关键贡献在于:(i)我们给出了关于SPD矩阵空间中卡尔彻期望的递归估计器的新颖理论结果,这实际上是对SPD矩阵流形的大数定律(有一些限制)的证明。(ii)我们还提出了用于计算一组SPD矩阵均值的对称化KL散度的递归版本。(iii)我们给出了计算一组SPD矩阵(扩散张量)均值的比较计时结果,展示了使用所提出的递归算法相对于现有的非递归对应算法在计算时间上的提升。最后,我们还展示了将这些递归算法应用于DTI分割任务时在计算时间上的提升结果。