Ziyan Ulas, Tuch David, Westin Carl-Fredrik
MIT Computer Science and Artificial Intelligence Lab, Cambridge MA, USA.
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):807-14. doi: 10.1007/11866763_99.
Recent work shows that diffusion tensor imaging (DTI) can help resolving thalamic nuclei based on the characteristic fiber orientation of the corticothalamic/thalamocortical striations within each nucleus. In this paper we describe a novel segmentation method based on spectral clustering. We use Markovian relaxation to handle spatial information in a natural way, and we explicitly minimize the normalized cut criteria of the spectral clustering for a better optimization. Using this modified spectral clustering algorithm, we can resolve the organization of the thalamic nuclei into groups and subgroups solely based on the voxel affinity matrix, avoiding the need for explicitly defined cluster centers. The identification of nuclear subdivisions can facilitate localization of functional activation and pathology to individual nuclear subgroups.
近期研究表明,扩散张量成像(DTI)能够基于每个丘脑核团内皮质丘脑/丘脑皮质纹状体的特征纤维取向来帮助分辨丘脑核团。在本文中,我们描述了一种基于谱聚类的新型分割方法。我们采用马尔可夫松弛以自然的方式处理空间信息,并明确地最小化谱聚类的归一化割准则以实现更好的优化。使用这种改进的谱聚类算法,我们能够仅基于体素亲和矩阵将丘脑核团的组织结构解析为组和子组,而无需明确界定聚类中心。核亚群的识别有助于将功能激活和病变定位到各个核子组。