Ecole Supérieure de Technologie, Université Hassan 1er, Passage d'Alger, B.P.: 218, 26100 Berrechid, Morocco.
Analyst. 2013 Nov 21;138(22):6801-10. doi: 10.1039/c3an01035j.
With the recent developments in secondary ion mass spectrometry (SIMS), it is now possible to obtain molecular depth profiles and 3D molecular images of organic thin films, i.e. SIMS depth profiles where the molecular information of the mass spectrum is retained through the sputtering of the sample. Several approaches have been proposed for "damageless" profiling, including the sputtering with SF5(+) and C60(+) clusters, low energy Cs(+) ions and, more recently, large noble gas clusters (Ar500-5000(+)). In this article, we evaluate the merits of these different approaches for the in depth analysis of organic photovoltaic heterojunctions involving poly(3-hexylthiophene) (P3HT) as the electron donor and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) as the acceptor. It is demonstrated that the use of 30 keV C60(3+) and 500 eV Cs(+) (500 eV per atom) leads to strong artifacts for layers in which the fullerene derivative PCBM is involved, related to crosslinking and topography development. In comparison, the profiles obtained using 10 keV Ar1700(+) (∼6 eV per atom) do not indicate any sign of artifacts and reveal fine compositional details in the blends. However, increasing the energy of the Ar cluster beam beyond that value leads to irreversible damage and failure of the molecular depth profiling. The profile qualities, apparent interface widths and sputtering yields are analyzed in detail. On the grounds of these experiments and recent molecular dynamics simulations, the discussion addresses the issues of damage and crater formation induced by the sputtering and the analysis ions in such radiation-sensitive materials, and their effects on the profile quality and the depth resolution. Solutions are proposed to optimize the depth resolution using either large Ar clusters or low energy cesium projectiles for sputtering and/or analysis.
随着二次离子质谱(SIMS)的最新发展,现在已经可以获得有机薄膜的分子深度剖面和 3D 分子图像,即在溅射样品的过程中保留质谱分子信息的 SIMS 深度剖面。已经提出了几种“无损伤”剖面的方法,包括使用 SF5(+)和 C60(+)簇、低能 Cs(+)离子以及最近的大惰性气体簇(Ar500-5000(+))进行溅射。在本文中,我们评估了这些不同方法在深入分析涉及聚(3-己基噻吩)(P3HT)作为电子供体和[6,6]-苯基 C61 丁酸甲酯(PCBM)作为受体的有机光伏异质结的优点。结果表明,使用 30 keV C60(3+)和 500 eV Cs(+)(每个原子 500 eV)会导致富勒烯衍生物 PCBM 参与的层出现强烈的伪像,这与交联和形貌发展有关。相比之下,使用 10 keV Ar1700(+)(每个原子约 6 eV)获得的剖面没有任何伪像迹象,并揭示了混合物中的精细成分细节。然而,将 Ar 团簇束的能量增加到该值以上会导致分子深度剖面的不可逆损坏和失效。详细分析了剖面质量、明显的界面宽度和溅射产率。根据这些实验和最近的分子动力学模拟,讨论了溅射和分析离子在这种辐射敏感材料中引起的损伤和凹坑形成问题,以及它们对剖面质量和深度分辨率的影响。提出了使用大的 Ar 团簇或低能铯射弹进行溅射和/或分析来优化深度分辨率的解决方案。