Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA.
Anal Chem. 2009 Oct 15;81(20):8272-9. doi: 10.1021/ac900553z.
Depth profiling of sucrose thin films was investigated with time-of-flight secondary ion mass spectrometry (TOF-SIMS) using 10 keV C(60)(+), 20 keV C(60)(2+), and 30 keV C(60)(3+), and 250, 500, and 1000 eV Cs(+) and O(2)(+) as sputtering ions. With C(60)(n+) ions, the molecular ion signal initially decreases and reaches a steady state that is about 38-51% of its original intensity, depending on the energy of the C(60)(n+) ions. In contrast, with Cs(+) and O(2)(+) sputtering, molecular ion signals decrease quickly to the noise level, even using very low-energy (250 eV) ions. In addition, the measured width of the sucrose/Si interface is much narrower using C(60)(+) ions than that using Cs(+) or O(2)(+) ions. To understand the mechanisms of sputtering-induced damage by these ions, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were used to characterize the bottoms of these sputter craters. XPS data show very little chemical change in the C(60)(+) sputter crater, while considerable amorphous carbon was found in the O(2)(+) and Cs(+) sputter craters, indicating extensive decomposition of the sucrose molecules. AFM images show a very flat bottom in the C(60)(+) sputter crater, while the bottoms of the Cs(+) and O(2)(+) sputter craters are significantly rougher. We used the sputtering model developed by Wucher and co-workers to quantitatively analyze our C(60)(1-3+) data. The results show that low energy C(60)(+) ions generate a relatively thin damage layer with a high molecular ion signal, suggesting that low energy C(60)(+) may be the optimal choice for molecular depth profiling of sucrose films.
采用飞行时间二次离子质谱(TOF-SIMS),用 10keV C(60)(+)、20keV C(60)(2+)和 30keV C(60)(3+)以及 250、500 和 1000eV Cs(+)和 O(2)(+)作为溅射离子,对蔗糖薄膜进行了深度剖析。用 C(60)(n+)离子时,分子离子信号最初会下降,并达到一个稳定状态,其强度约为初始强度的 38-51%,具体取决于 C(60)(n+)离子的能量。相比之下,用 Cs(+)和 O(2)(+)溅射时,即使使用非常低能(250eV)的离子,分子离子信号也会迅速降至噪声水平。此外,用 C(60)(+)离子测量的蔗糖/Si 界面的宽度比用 Cs(+)或 O(2)(+)离子时要窄得多。为了理解这些离子溅射诱导损伤的机制,使用 X 射线光电子能谱(XPS)和原子力显微镜(AFM)来表征这些溅射坑的底部。XPS 数据表明,C(60)(+)溅射坑中的化学变化很小,而在 O(2)(+)和 Cs(+)溅射坑中发现了大量非晶碳,表明蔗糖分子发生了广泛的分解。AFM 图像显示,C(60)(+)溅射坑的底部非常平坦,而 Cs(+)和 O(2)(+)溅射坑的底部则明显粗糙。我们使用 Wucher 及其同事开发的溅射模型对我们的 C(60)(1-3+)数据进行了定量分析。结果表明,低能 C(60)(+)离子产生了一个相对较薄的损伤层,具有较高的分子离子信号,这表明低能 C(60)(+)可能是蔗糖薄膜分子深度剖析的最佳选择。