Suppr超能文献

新型循环同调检测方法,用于高精度和特定的神经动力学特征描述。

Novel cyclic homogeneous oscillation detection method for high accuracy and specific characterization of neural dynamics.

机构信息

Department of Neurosurgery, Washington University School of Medicine, St. Louis, United States.

National Center for Adaptive Neurotechnologies, St. Louis, United States.

出版信息

Elife. 2024 Sep 6;12:RP91605. doi: 10.7554/eLife.91605.

Abstract

Determining the presence and frequency of neural oscillations is essential to understanding dynamic brain function. Traditional methods that detect peaks over 1/ noise within the power spectrum fail to distinguish between the fundamental frequency and harmonics of often highly non-sinusoidal neural oscillations. To overcome this limitation, we define fundamental criteria that characterize neural oscillations and introduce the cyclic homogeneous oscillation (CHO) detection method. We implemented these criteria based on an autocorrelation approach to determine an oscillation's fundamental frequency. We evaluated CHO by verifying its performance on simulated non-sinusoidal oscillatory bursts and validated its ability to determine the fundamental frequency of neural oscillations in electrocorticographic (ECoG), electroencephalographic (EEG), and stereoelectroencephalographic (SEEG) signals recorded from 27 human subjects. Our results demonstrate that CHO outperforms conventional techniques in accurately detecting oscillations. In summary, CHO demonstrates high precision and specificity in detecting neural oscillations in time and frequency domains. The method's specificity enables the detailed study of non-sinusoidal characteristics of oscillations, such as the degree of asymmetry and waveform of an oscillation. Furthermore, CHO can be applied to identify how neural oscillations govern interactions throughout the brain and to determine oscillatory biomarkers that index abnormal brain function.

摘要

确定神经振荡的存在和频率对于理解动态脑功能至关重要。传统的方法,即在功率谱中检测超过 1/噪声的峰值,无法区分通常高度非正弦神经振荡的基频和谐波。为了克服这一限制,我们定义了表征神经振荡的基本准则,并引入了循环均匀振荡(CHO)检测方法。我们基于自相关方法实现了这些准则,以确定振荡的基频。我们通过验证其在模拟非正弦振荡爆发中的性能来评估 CHO,并验证其在从 27 名人类受试者记录的脑电图(EEG)、脑电描记术(ECoG)和立体脑电图描记术(SEEG)信号中确定神经振荡基频的能力。我们的结果表明,CHO 在准确检测振荡方面优于传统技术。总之,CHO 在时间和频率域中检测神经振荡具有高精度和特异性。该方法的特异性使得可以详细研究振荡的非正弦特性,例如振荡的不对称程度和波形。此外,CHO 可用于识别神经振荡如何控制整个大脑的相互作用,并确定振荡生物标志物,以指示异常脑功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验