From the Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Blackburn Building (D06), University of Sydney, Sydney, New South Wales 2006, Australia.
J Biol Chem. 2013 Nov 1;288(44):31761-71. doi: 10.1074/jbc.M113.514091. Epub 2013 Sep 23.
Localization of the drug transporter P-glycoprotein (Pgp) to the plasma membrane is thought to be the only contributor of Pgp-mediated multidrug resistance (MDR). However, very little work has focused on the contribution of Pgp expressed in intracellular organelles to drug resistance. This investigation describes an additional mechanism for understanding how lysosomal Pgp contributes to MDR. These studies were performed using Pgp-expressing MDR cells and their non-resistant counterparts. Using confocal microscopy and lysosomal fractionation, we demonstrated that intracellular Pgp was localized to LAMP2-stained lysosomes. In Pgp-expressing cells, the Pgp substrate doxorubicin (DOX) became sequestered in LAMP2-stained lysosomes, but this was not observed in non-Pgp-expressing cells. Moreover, lysosomal Pgp was demonstrated to be functional because DOX accumulation in this organelle was prevented upon incubation with the established Pgp inhibitors valspodar or elacridar or by silencing Pgp expression with siRNA. Importantly, to elicit drug resistance via lysosomes, the cytotoxic chemotherapeutics (e.g. DOX, daunorubicin, or vinblastine) were required to be Pgp substrates and also ionized at lysosomal pH (pH 5), resulting in them being sequestered and trapped in lysosomes. This property was demonstrated using lysosomotropic weak bases (NH4Cl, chloroquine, or methylamine) that increased lysosomal pH and sensitized only Pgp-expressing cells to such cytotoxic drugs. Consequently, a lysosomal Pgp-mediated mechanism of MDR was not found for non-ionizable Pgp substrates (e.g. colchicine or paclitaxel) or ionizable non-Pgp substrates (e.g. cisplatin or carboplatin). Together, these studies reveal a new mechanism where Pgp-mediated lysosomal sequestration of chemotherapeutics leads to MDR that is amenable to therapeutic exploitation.
药物转运蛋白 P-糖蛋白(Pgp)定位于质膜被认为是 Pgp 介导的多药耐药(MDR)的唯一贡献者。然而,很少有工作集中在细胞内细胞器中表达的 Pgp 对耐药性的贡献。这项研究描述了一种理解溶酶体 Pgp 如何导致 MDR 的额外机制。这些研究是使用表达 Pgp 的 MDR 细胞及其非耐药对应物进行的。通过共聚焦显微镜和溶酶体分级分离,我们证明细胞内 Pgp 定位于 LAMP2 染色的溶酶体。在表达 Pgp 的细胞中,Pgp 底物阿霉素(DOX)被隔离在 LAMP2 染色的溶酶体中,但在非 Pgp 表达的细胞中没有观察到这种情况。此外,证明溶酶体 Pgp 是功能性的,因为在用已建立的 Pgp 抑制剂 valspodar 或 elacridar 孵育或用 siRNA 沉默 Pgp 表达时,DOX 在该细胞器中的积累被阻止。重要的是,为了通过溶酶体引起耐药性,细胞毒性化疗药物(例如 DOX、柔红霉素或长春碱)必须是 Pgp 的底物,并且在溶酶体 pH(pH 5)下也离子化,导致它们被隔离并困在溶酶体中。使用溶酶体型弱碱(氯化铵、氯喹或甲胺)证明了这种特性,溶酶体型弱碱增加了溶酶体 pH 并仅使表达 Pgp 的细胞对这些细胞毒性药物敏感。因此,对于非可离子化的 Pgp 底物(例如秋水仙碱或紫杉醇)或可离子化的非 Pgp 底物(例如顺铂或卡铂),没有发现溶酶体 Pgp 介导的 MDR 机制。总之,这些研究揭示了一种新的机制,即 Pgp 介导的化疗药物溶酶体隔离导致 MDR,这种 MDR 可通过治疗利用。