Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138.
Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):E3901-9. doi: 10.1073/pnas.1308069110. Epub 2013 Sep 23.
We introduce a discrete-time variational principle inspired by the quantum clock originally proposed by Feynman and use it to write down quantum evolution as a ground-state eigenvalue problem. The construction allows one to apply ground-state quantum many-body theory to quantum dynamics, extending the reach of many highly developed tools from this fertile research area. Moreover, this formalism naturally leads to an algorithm to parallelize quantum simulation over time. We draw an explicit connection between previously known time-dependent variational principles and the time-embedded variational principle presented. Sample calculations are presented, applying the idea to a hydrogen molecule and the spin degrees of freedom of a model inorganic compound, demonstrating the parallel speedup of our method as well as its flexibility in applying ground-state methodologies. Finally, we take advantage of the unique perspective of this variational principle to examine the error of basis approximations in quantum dynamics.
我们介绍了一个受费曼最初提出的量子钟启发的离散时间变分原理,并利用它将量子演化写成基态本征值问题。这种构造允许将量子多体理论应用于量子动力学,从而扩展了这一富有成果的研究领域中许多高度发达的工具的应用范围。此外,这种形式主义自然导致了一种随时间并行化量子模拟的算法。我们在之前已知的时变变分原理和所提出的时嵌变分原理之间建立了明确的联系。给出了示例计算,将该思想应用于氢分子和模型无机化合物的自旋自由度,展示了我们方法的并行加速以及将基态方法应用于该方法的灵活性。最后,我们利用这个变分原理的独特视角来研究量子动力学中基函数近似的误差。