Hollingsworth Jennifer A
Material Physics & Applications Division: Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 8754.
Chem Mater. 2013 Apr 23;25(8):1318-1331. doi: 10.1021/cm304161d.
At the level of a single particle, nanocrystal quantum dots (NQDs) are observed to fluoresce intermittently or "blink." They are also characterized by an efficient non-radiative recombination process known as Auger Recombination (AR). Recently, new approaches to NQD heterostructuring have been developed that directly impact both blinking and AR, resulting in dramatic suppression of these unwanted processes. The three successful hetero-NQD motifs are reviewed here: (1) interfacial alloying, (2) thick or "giant" shells, and (3) specific type-II electronic structures. These approaches, which rely on modifying or tuning internal NQD core/shell structures, are compared with alternative strategies for blinking suppression that rely, instead, on surface modifications or surface-mediated interactions. Finally, in each case, the unique synthetic approaches or challenges addressed that have driven the realization of novel and important functionality are discussed, along with the implications for development of a comprehensive 'materials design' strategy for blinking and AR-suppressed heterostructured NQDs.
在单个粒子层面,人们观察到纳米晶体量子点(NQD)会间歇性地发出荧光,即“闪烁”。它们还具有一种高效的非辐射复合过程,称为俄歇复合(AR)。最近,已开发出新型的NQD异质结构方法,这些方法直接影响闪烁和AR,从而显著抑制了这些有害过程。本文综述了三种成功的异质NQD结构:(1)界面合金化,(2)厚或“巨型”壳层,以及(3)特定的II型电子结构。这些依赖于修饰或调整内部NQD核/壳结构的方法,与依赖于表面修饰或表面介导相互作用的闪烁抑制替代策略进行了比较。最后,在每种情况下,都讨论了为实现新颖且重要功能而采用的独特合成方法或面临的挑战,以及对开发用于闪烁和AR抑制的异质结构NQD的综合“材料设计”策略的影响。