Suppr超能文献

使用分层体系结构进行动作选择的六足步行机。

A hexapod walker using a heterarchical architecture for action selection.

机构信息

Center of Excellence 'Cognitive Interaction Technology,' Bielefeld University Germany.

出版信息

Front Comput Neurosci. 2013 Sep 17;7:126. doi: 10.3389/fncom.2013.00126. eCollection 2013.

Abstract

Moving in a cluttered environment with a six-legged walking machine that has additional body actuators, therefore controlling 22 DoFs, is not a trivial task. Already simple forward walking on a flat plane requires the system to select between different internal states. The orchestration of these states depends on walking velocity and on external disturbances. Such disturbances occur continuously, for example due to irregular up-and-down movements of the body or slipping of the legs, even on flat surfaces, in particular when negotiating tight curves. The number of possible states is further increased when the system is allowed to walk backward or when front legs are used as grippers and cannot contribute to walking. Further states are necessary for expansion that allow for navigation. Here we demonstrate a solution for the selection and sequencing of different (attractor) states required to control different behaviors as are forward walking at different speeds, backward walking, as well as negotiation of tight curves. This selection is made by a recurrent neural network (RNN) of motivation units, controlling a bank of decentralized memory elements in combination with the feedback through the environment. The underlying heterarchical architecture of the network allows to select various combinations of these elements. This modular approach representing an example of neural reuse of a limited number of procedures allows for adaptation to different internal and external conditions. A way is sketched as to how this approach may be expanded to form a cognitive system being able to plan ahead. This architecture is characterized by different types of modules being arranged in layers and columns, but the complete network can also be considered as a holistic system showing emergent properties which cannot be attributed to a specific module.

摘要

在杂乱的环境中移动,使用具有额外身体执行器的六足步行机,因此控制 22 个自由度,并不是一件简单的任务。即使在平坦的表面上,简单的向前行走也需要系统在不同的内部状态之间进行选择。这些状态的协调取决于行走速度和外部干扰。这种干扰是连续发生的,例如由于身体的不规则上下运动或腿部滑动,即使在平坦表面上,特别是在通过紧曲线时。当系统允许向后行走或当前腿用作夹具并且不能有助于行走时,状态的数量会进一步增加。进一步的状态是扩展所必需的,这允许导航。在这里,我们演示了一种用于选择和排序不同(吸引子)状态的解决方案,这些状态需要控制不同的行为,例如以不同的速度向前行走、向后行走以及通过紧曲线的导航。这种选择是通过动机单元的递归神经网络(RNN)来实现的,该网络与通过环境的反馈相结合,控制一组分散的存储单元。网络的分层结构允许选择这些元素的各种组合。这种模块化方法代表了对有限数量的过程进行神经重用的一个例子,允许适应不同的内部和外部条件。本文概述了如何扩展这种方法来形成能够提前规划的认知系统。这种架构的特点是不同类型的模块按层和列排列,但完整的网络也可以被视为一个整体系统,表现出不能归因于特定模块的突发特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad72/3774992/0495c6bc1a0d/fncom-07-00126-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验