Suppr超能文献

神经可视化:具身神经系统的实时神经信息测量与可视化。

NeuroVis: Real-Time Neural Information Measurement and Visualization of Embodied Neural Systems.

机构信息

Bio-inspired Robotics and Neural Engineering Laboratory, School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand.

Embodied Artificial Intelligence and Neurorobotics Laboratory, SDU Biorobotics, The Mærsk Mc-Kinney Møller Institute, University of Southern Denmark, Odense, Denmark.

出版信息

Front Neural Circuits. 2021 Dec 27;15:743101. doi: 10.3389/fncir.2021.743101. eCollection 2021.

Abstract

Understanding the real-time dynamical mechanisms of neural systems remains a significant issue, preventing the development of efficient neural technology and user trust. This is because the mechanisms, involving various neural spatial-temporal ingredients [i.e., neural structure (NS), neural dynamics (ND), neural plasticity (NP), and neural memory (NM)], are too complex to interpret and analyze altogether. While advanced tools have been developed using explainable artificial intelligence (XAI), node-link diagram, topography map, and other visualization techniques, they still fail to monitor and visualize all of these neural ingredients online. Accordingly, we propose here for the first time "NeuroVis," real-time neural spatial-temporal information measurement and visualization, as a method/tool to measure temporal neural activities and their propagation throughout the network. By using this neural information along with the connection strength and plasticity, NeuroVis can visualize the NS, ND, NM, and NP via i) spatial 2D position and connection, ii) temporal color gradient, iii) connection thickness, and iv) temporal luminous intensity and change of connection thickness, respectively. This study presents three use cases of NeuroVis to evaluate its performance: i) function approximation using a modular neural network with recurrent and feedforward topologies together with supervised learning, ii) robot locomotion control and learning using the same modular network with reinforcement learning, and iii) robot locomotion control and adaptation using another larger-scale adaptive modular neural network. The use cases demonstrate how NeuroVis tracks and analyzes all neural ingredients of various (embodied) neural systems in real-time under the robot operating system (ROS) framework. To this end, it will offer the opportunity to better understand embodied dynamic neural information processes, boost efficient neural technology development, and enhance user trust.

摘要

理解神经系统的实时动态机制仍然是一个重大问题,这阻碍了高效神经技术的发展和用户信任。这是因为,涉及到各种神经时空成分(即神经结构(NS)、神经动力学(ND)、神经可塑性(NP)和神经记忆(NM))的机制过于复杂,无法整体进行解释和分析。尽管已经使用可解释人工智能(XAI)、节点链接图、地形映射和其他可视化技术开发了先进的工具,但它们仍然无法在线监测和可视化所有这些神经成分。因此,我们首次提出了“NeuroVis”,即实时神经时空信息测量和可视化,作为一种测量和可视化整个网络中时间神经活动及其传播的方法/工具。通过使用这种神经信息以及连接强度和可塑性,NeuroVis 可以通过以下方式可视化 NS、ND、NM 和 NP:i)空间 2D 位置和连接,ii)时间颜色梯度,iii)连接厚度,以及 iv)时间亮度和连接厚度的变化。本研究提出了三个使用案例来评估 NeuroVis 的性能:i)使用具有递归和前馈拓扑的模块化神经网络以及监督学习进行功能逼近,ii)使用相同的模块化网络进行机器人运动控制和学习,以及 iii)使用另一个更大规模的自适应模块化神经网络进行机器人运动控制和自适应。这些用例演示了 NeuroVis 如何在机器人操作系统(ROS)框架下实时跟踪和分析各种(体现)神经系统的所有神经成分。为此,它将提供机会更好地理解体现动态神经信息过程,推动高效神经技术的发展,并增强用户信任。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5eee/8751631/b8db2acc62f7/fncir-15-743101-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验