European Commission, Joint Research Centre, Institute for Transuranium Elements , P.O. Box 2340, D-76125 Karlsruhe, Germany.
Inorg Chem. 2013 Oct 7;52(19):11669-76. doi: 10.1021/ic402144g. Epub 2013 Sep 24.
A series of uranium carbide samples, prepared by arc melting with a C/U ratio ranging from 0.96 to 1.04, has been studied by X-ray diffraction (XRD), (13)C nuclear magnetic resonance (NMR), and extended X-ray absorption fine structure (EXAFS). XRD determines phase uniqueness and the increase of the lattice parameter versus the carbon content. In contrast, (13)C NMR detects the different carbon environments in the lattice and in this study, clearly identifies the presence of discrete peaks for carbon in the octahedral lattice site in UC and an additional peak associated with excess carbon in hyperstoichiometric samples. Two peaks associated with different levels of carbon deficiency are detected for all hypostoichiometric compositions. More than one carbon environment is always detected by (13)C NMR. This exemplifies the difficulty in obtaining a perfect stoichiometric uranium monocarbide UC(1.00). The (13)C MAS spectra of uranium carbides exhibit the effects resulting from the carbon content on both the broadening of the peaks and on the Knight shift. An abrupt spectral change occurs between hypo- and hyperstoichiometric samples. The results obtained by EXAFS highlight subtle differences between the different stoichiometries, and in the hyperstoichiometric samples, the EXAFS results are consistent with the excess carbon atoms being in the tetrahedral interstitial position.
用 C/U 比为 0.96 至 1.04 的电弧熔炼制备了一系列碳化铀样品,并用 X 射线衍射 (XRD)、(13)C 核磁共振 (NMR) 和扩展 X 射线吸收精细结构 (EXAFS) 进行了研究。XRD 确定了相的独特性和晶格参数随碳含量的增加。相比之下,(13)C NMR 检测到晶格中不同的碳环境,在本研究中,清楚地识别出 UC 中八面体晶格位置中离散的碳峰的存在,以及与超化学计量样品中多余碳相关的附加峰。对于所有欠化学计量的组成,都检测到与不同程度的碳缺乏相关的两个峰。(13)C NMR 总是检测到不止一种碳环境。这说明了获得完美化学计量的碳化铀 UC(1.00)的困难。碳化铀的 (13)C MAS 光谱显示了碳含量对峰展宽和奈特位移的影响。在欠化学计量和超化学计量样品之间,光谱发生突然变化。EXAFS 的结果突出了不同化学计量之间的细微差异,在超化学计量样品中,EXAFS 的结果与多余的碳原子处于四面体间隙位置一致。