1 Department of Radiology, Duke University Medical Center, DUMC Box 3808, Durham, NC, 27710.
AJR Am J Roentgenol. 2013 Nov;201(5):W730-4. doi: 10.2214/AJR.12.10031. Epub 2013 Sep 24.
The purpose of this study was to measure the organ doses and estimate the effective dose for the standard brain perfusion CT protocol and erroneous protocols.
An anthropomorphic phantom with metal oxide semiconductor field effect transistor (MOSFET) detectors was scanned on a 64-MDCT scanner. Protocol 1 used a standard brain perfusion protocol with 80 kVp and fixed tube current of 200 mA. Protocol 2 used 120 kVp and fixed tube current of 200 mA. Protocol 3 used 120 kVp with automatic tube current modulation (noise index, 2.4; minimum, 100 mA; maximum, 520 mA).
Compared with protocol 1, the effective dose was 2.8 times higher with protocol 2 and 7.8 times higher with protocol 3. For all protocols, the peak dose was highest in the skin, followed by the brain and calvarial marrow. Compared with protocol 1, the peak skin dose was 2.6 times higher with protocol 2 and 6.7 times higher with protocol 3. The peak skin dose for protocol 3 exceeded 3 Gy. The ocular lens received significant scatter radiation: 177 mGy for protocol 2 and 435 mGy for protocol 3, which were 4.6 and 11.3 times the dose for protocol 1, respectively.
Compared with the standard protocol, erroneous protocols of increasing the tube potential from 80 kVp to 120 kVp will lead to a three- to fivefold increase in organ doses, and concurrent use of high peak kilovoltage with incorrectly programmed tube current modulation can increase dose to organs by 7- to 11-fold. Tube current modulation with a low noise index can lead to doses to the skin and ocular lens that are close to thresholds for tissue reactions.
本研究旨在测量器官剂量,并估算标准脑灌注 CT 协议和错误协议的有效剂量。
采用带有金属氧化物半导体场效应晶体管(MOSFET)探测器的人体模型,在 64 层 MDCT 扫描仪上进行扫描。方案 1 采用标准脑灌注方案,管电压为 80 kVp,固定管电流为 200 mA。方案 2 采用 120 kVp,固定管电流为 200 mA。方案 3 采用 120 kVp 自动管电流调制(噪声指数 2.4;最小值 100 mA;最大值 520 mA)。
与方案 1 相比,方案 2 的有效剂量增加了 2.8 倍,方案 3 增加了 7.8 倍。对于所有方案,峰值剂量在皮肤最高,其次是大脑和颅骨骨髓。与方案 1 相比,方案 2 的峰值皮肤剂量增加了 2.6 倍,方案 3 增加了 6.7 倍。方案 3 的峰值皮肤剂量超过 3 Gy。眼晶状体接收到显著的散射辐射:方案 2 为 177 mGy,方案 3 为 435 mGy,分别为方案 1 的 4.6 倍和 11.3 倍。
与标准方案相比,将管电压从 80 kVp 增加到 120 kVp 的错误方案会导致器官剂量增加 3 至 5 倍,同时使用高千伏峰值和错误编程的管电流调制会使器官剂量增加 7 至 11 倍。低噪声指数的管电流调制会导致皮肤和眼晶状体的剂量接近组织反应的阈值。