Suppr超能文献

一种基于奇异值分解的新型去噪方法在脑卒中患者四维 CT 中的应用及统计学评估。

A Novel Singular Value Decomposition-Based Denoising Method in 4-Dimensional Computed Tomography of the Brain in Stroke Patients with Statistical Evaluation.

机构信息

Department of Radiology, Dong-A University Hospital, Busan 49201, Korea.

Department of Multidisciplinary Radiological Science, Graduate School, Dongseo University, Busan 47011, Korea.

出版信息

Sensors (Basel). 2020 May 28;20(11):3063. doi: 10.3390/s20113063.

Abstract

Computed tomography (CT) is a widely used medical imaging modality for diagnosing various diseases. Among CT techniques, 4-dimensional CT perfusion (4D-CTP) of the brain is established in most centers for diagnosing strokes and is considered the gold standard for hyperacute stroke diagnosis. However, because the detrimental effects of high radiation doses from 4D-CTP may cause serious health risks in stroke survivors, our research team aimed to introduce a novel image-processing technique. Our singular value decomposition (SVD)-based image-processing technique can improve image quality, first, by separating several image components using SVD and, second, by reconstructing signal component images to remove noise, thereby improving image quality. For the demonstration in this study, 20 4D-CTP dynamic images of suspected acute stroke patients were collected. Both the images that were and were not processed via the proposed method were compared. Each acquired image was objectively evaluated using contrast-to-noise and signal-to-noise ratios. The scores of the parameters assessed for the qualitative evaluation of image quality improved to an excellent rating ( < 0.05). Therefore, our SVD-based image-denoising technique improved the diagnostic value of images by improving their quality. The denoising technique and statistical evaluation can be utilized in various clinical applications to provide advanced medical services.

摘要

计算机断层扫描(CT)是一种广泛用于诊断各种疾病的医学成像方式。在 CT 技术中,脑部的 4 维 CT 灌注(4D-CTP)在大多数中心被确立用于诊断中风,并且被认为是超急性中风诊断的金标准。然而,由于 4D-CTP 的高辐射剂量的有害影响可能会给中风幸存者带来严重的健康风险,我们的研究团队旨在引入一种新的图像处理技术。我们的基于奇异值分解(SVD)的图像处理技术可以通过 SVD 首先分离几个图像分量,其次通过重建信号分量图像来去除噪声,从而提高图像质量。在本研究的演示中,收集了 20 个疑似急性中风患者的 4D-CTP 动态图像。比较了经过和未经过所提出的方法处理的图像。使用对比噪声比和信噪比对每个采集的图像进行客观评估。用于图像质量定性评估的参数的评分提高到了优秀等级(<0.05)。因此,我们的基于 SVD 的图像去噪技术通过提高图像质量来提高其诊断价值。该去噪技术和统计评估可以在各种临床应用中使用,以提供先进的医疗服务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8211/7309118/88e3f73c6c8d/sensors-20-03063-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验