Suppr超能文献

人骨-牙周韧带-牙纤维关节的塑料性质。

The plastic nature of the human bone-periodontal ligament-tooth fibrous joint.

机构信息

Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, San Francisco, CA, USA.

出版信息

Bone. 2013 Dec;57(2):455-67. doi: 10.1016/j.bone.2013.09.007. Epub 2013 Sep 21.

Abstract

This study investigates bony protrusions within a narrowed periodontal ligament space (PDL-space) of a human bone-PDL-tooth fibrous joint by mapping structural, biochemical, and mechanical heterogeneity. Higher resolution structural characterization was achieved via complementary atomic force microscopy (AFM), nano-transmission X-ray microscopy (nano-TXM), and microtomography (MicroXCT™). Structural heterogeneity was correlated to biochemical and elemental composition, illustrated via histochemistry and microprobe X-ray fluorescence analysis (μ-XRF), and mechanical heterogeneity evaluated by AFM-based nanoindentation. Results demonstrated that the narrowed PDL-space was due to invasion of bundle bone (BB) into PDL-space. Protruded BB had a wider range with higher elastic modulus values (2-8GPa) compared to lamellar bone (0.8-6GPa), and increased quantities of Ca, P and Zn as revealed by μ-XRF. Interestingly, the hygroscopic 10-30μm interface between protruded BB and lamellar bone exhibited higher X-ray attenuation similar to cement lines and lamellae within bone. Localization of the small leucine rich proteoglycan biglycan (BGN) responsible for mineralization was observed at the PDL-bone interface and around the osteocyte lacunae. Based on these results, it can be argued that the LB-BB interface was the original site of PDL attachment, and that the genesis of protruded BB identified as protrusions occurred as a result of shift in strain. We emphasize the importance of bony protrusions within the context of organ function and that additional study is warranted.

摘要

本研究通过绘制结构、生化和力学异质性图,研究了人类骨牙周韧带纤维关节中狭窄的牙周韧带空间(PDL 空间)内的骨性突起。通过互补原子力显微镜(AFM)、纳米传输 X 射线显微镜(nano-TXM)和微断层扫描(MicroXCT™)实现了更高分辨率的结构特征描述。通过组织化学和微探针 X 射线荧光分析(μ-XRF)对生化和元素组成进行了图示说明,结构异质性与生化和元素组成相关联,并用 AFM 纳米压痕评估了力学异质性。结果表明,狭窄的 PDL 空间是由于束状骨(BB)侵入 PDL 空间所致。与板层骨(0.8-6GPa)相比,突出的 BB 具有更大的范围和更高的弹性模量值(2-8GPa),μ-XRF 显示 Ca、P 和 Zn 的含量增加。有趣的是,在突出的 BB 和板层骨之间的 10-30μm 吸湿界面具有与骨内的水泥线和板层相似的较高 X 射线衰减。负责矿化的富含亮氨酸的小蛋白聚糖 biglycan(BGN)的定位观察到在 PDL-骨界面和骨细胞腔周围。基于这些结果,可以认为 LB-BB 界面是 PDL 附着的原始部位,并且作为应变转移的结果,确定为突起的突出 BB 的发生起源。我们强调了在器官功能背景下骨性突起的重要性,需要进一步研究。

相似文献

1
The plastic nature of the human bone-periodontal ligament-tooth fibrous joint.
Bone. 2013 Dec;57(2):455-67. doi: 10.1016/j.bone.2013.09.007. Epub 2013 Sep 21.
2
Discontinuities in the human bone-PDL-cementum complex.
Biomaterials. 2011 Oct;32(29):7106-17. doi: 10.1016/j.biomaterials.2011.06.021. Epub 2011 Jul 20.
3
Multiscale biomechanical responses of adapted bone-periodontal ligament-tooth fibrous joints.
Bone. 2015 Dec;81:196-207. doi: 10.1016/j.bone.2015.07.004. Epub 2015 Jul 4.
4
The biomechanical characteristics of the bone-periodontal ligament-cementum complex.
Biomaterials. 2010 Sep;31(25):6635-46. doi: 10.1016/j.biomaterials.2010.05.024. Epub 2010 Jun 11.
5
Age-related adaptation of bone-PDL-tooth complex: Rattus-Norvegicus as a model system.
PLoS One. 2012;7(4):e35980. doi: 10.1371/journal.pone.0035980. Epub 2012 Apr 30.
6
Strain-guided mineralization in the bone-PDL-cementum complex of a rat periodontium.
Bone Rep. 2015 Dec 1;3:20-31. doi: 10.1016/j.bonr.2015.04.002.
7
Differentiating zones at periodontal ligament-bone and periodontal ligament-cementum entheses.
J Periodontal Res. 2015 Dec;50(6):870-80. doi: 10.1111/jre.12281. Epub 2015 Jun 1.
8
Reduced functional loads alter the physical characteristics of the bone-periodontal ligament-cementum complex.
J Periodontal Res. 2011 Dec;46(6):730-41. doi: 10.1111/j.1600-0765.2011.01396.x. Epub 2011 Aug 17.
9
Response of the tooth-periodontal ligament-bone complex to load: A microCT study of the minipig molar.
J Struct Biol. 2019 Feb 1;205(2):155-162. doi: 10.1016/j.jsb.2019.01.002. Epub 2019 Jan 11.
10
Effects of biglycan on physico-chemical properties of ligament-mineralized tissue attachment sites.
Arch Oral Biol. 2012 Feb;57(2):177-87. doi: 10.1016/j.archoralbio.2011.08.011. Epub 2011 Sep 29.

引用本文的文献

1
Atomic force microscopy-mediated mechanobiological profiling of complex human tissues.
Biomaterials. 2023 Dec;303:122389. doi: 10.1016/j.biomaterials.2023.122389. Epub 2023 Nov 11.
3
Discovering genetic linkage between periodontitis and type 1 diabetes: A bioinformatics study.
Front Genet. 2023 Mar 27;14:1147819. doi: 10.3389/fgene.2023.1147819. eCollection 2023.
4
Assessment of Dimensional Changes in Periodontium with Immediate Replacement of Tooth by Socket-shield Technique.
J Pharm Bioallied Sci. 2022 Jul;14(Suppl 1):S217-S219. doi: 10.4103/jpbs.jpbs_1_22. Epub 2022 Jul 13.
5
Between a rock and a hard place: Regulation of mineralization in the periodontium.
Genesis. 2022 Sep;60(8-9):e23474. doi: 10.1002/dvg.23474. Epub 2022 Apr 23.
6
The effect of aging on the nanostructure of murine alveolar bone and dentin.
J Bone Miner Metab. 2021 Sep;39(5):757-768. doi: 10.1007/s00774-021-01227-0. Epub 2021 Apr 11.
7
Mechanoadaptive strain and functional osseointegration of dental implants in rats.
Bone. 2020 Aug;137:115375. doi: 10.1016/j.bone.2020.115375. Epub 2020 Apr 23.
8
The Mechanical Effect of the Periodontal Ligament on Bone Strain Regimes in a Validated Finite Element Model of a Macaque Mandible.
Front Bioeng Biotechnol. 2019 Oct 30;7:269. doi: 10.3389/fbioe.2019.00269. eCollection 2019.
9
Mechanoadaptive Responses in the Periodontium Are Coordinated by Wnt.
J Dent Res. 2019 Jun;98(6):689-697. doi: 10.1177/0022034519839438. Epub 2019 Apr 10.
10
Micropatterned Scaffolds with Immobilized Growth Factor Genes Regenerate Bone and Periodontal Ligament-Like Tissues.
Adv Healthc Mater. 2018 Nov;7(22):e1800750. doi: 10.1002/adhm.201800750. Epub 2018 Oct 19.

本文引用的文献

1
Biomechanics of a bone-periodontal ligament-tooth fibrous joint.
J Biomech. 2013 Feb 1;46(3):443-9. doi: 10.1016/j.jbiomech.2012.11.010. Epub 2012 Dec 7.
2
Vitamin C and zinc intakes are related to bone macroarchitectural structure and strength in prepubescent girls.
Calcif Tissue Int. 2012 Dec;91(6):430-9. doi: 10.1007/s00223-012-9656-8. Epub 2012 Oct 18.
3
Increased presence of capillaries next to remodeling sites in adult human cancellous bone.
J Bone Miner Res. 2013 Mar;28(3):574-85. doi: 10.1002/jbmr.1760.
4
Biglycan: a multivalent proteoglycan providing structure and signals.
J Histochem Cytochem. 2012 Dec;60(12):963-75. doi: 10.1369/0022155412456380. Epub 2012 Jul 20.
5
Imaging an adapted dentoalveolar complex.
Anat Res Int. 2012;2012:782571. doi: 10.1155/2012/782571. Epub 2012 Jan 19.
6
Age-related adaptation of bone-PDL-tooth complex: Rattus-Norvegicus as a model system.
PLoS One. 2012;7(4):e35980. doi: 10.1371/journal.pone.0035980. Epub 2012 Apr 30.
7
[Mechanosensitivity of osteocytes].
Clin Calcium. 2012 May;22(5):697-704.
8
High-resolution three-dimensional probes of biomaterials and their interfaces.
Philos Trans A Math Phys Eng Sci. 2012 Mar 28;370(1963):1337-51. doi: 10.1098/rsta.2011.0253.
9
Effects of biglycan on physico-chemical properties of ligament-mineralized tissue attachment sites.
Arch Oral Biol. 2012 Feb;57(2):177-87. doi: 10.1016/j.archoralbio.2011.08.011. Epub 2011 Sep 29.
10
Discontinuities in the human bone-PDL-cementum complex.
Biomaterials. 2011 Oct;32(29):7106-17. doi: 10.1016/j.biomaterials.2011.06.021. Epub 2011 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验