Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA.
Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Schools of Engineering, Medicine, and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.
Biomaterials. 2023 Dec;303:122389. doi: 10.1016/j.biomaterials.2023.122389. Epub 2023 Nov 11.
Tissue mechanobiology is an emerging field with the overarching goal of understanding the interplay between biophysical and biochemical responses affecting development, physiology, and disease. Changes in mechanical properties including stiffness and viscosity have been shown to describe how cells and tissues respond to mechanical cues and modify critical biological functions. To quantitatively characterize the mechanical properties of tissues at physiologically relevant conditions, atomic force microscopy (AFM) has emerged as a highly versatile biomechanical technology. In this review, we describe the fundamental principles of AFM, typical AFM modalities used for tissue mechanics, and commonly used elastic and viscoelastic contact mechanics models to characterize complex human tissues. Furthermore, we discuss the application of AFM-based mechanobiology to characterize the mechanical responses within complex human tissues to track their developmental, physiological/functional, and diseased states, including oral, hearing, and cancer-related tissues. Finally, we discuss the current outlook and challenges to further advance the field of tissue mechanobiology. Altogether, AFM-based tissue mechanobiology provides a mechanistic understanding of biological processes governing the unique functions of tissues.
组织力学是一个新兴的领域,其总体目标是了解影响发育、生理学和疾病的生物物理和生化反应之间的相互作用。已经表明,机械性能(包括刚度和粘度)的变化可以描述细胞和组织如何响应机械线索并改变关键的生物学功能。为了在生理相关条件下定量表征组织的机械性能,原子力显微镜(AFM)已成为一种高度通用的生物力学技术。在这篇综述中,我们描述了 AFM 的基本原理、用于组织力学的典型 AFM 模式以及常用的弹性和粘弹性接触力学模型,以表征复杂的人体组织。此外,我们讨论了基于 AFM 的机械生物学在表征复杂人体组织内的机械响应方面的应用,以跟踪其发育、生理/功能和疾病状态,包括口腔、听力和癌症相关组织。最后,我们讨论了进一步推进组织力学领域的当前展望和挑战。总之,基于 AFM 的组织力学为控制组织独特功能的生物学过程提供了机械理解。
Sensors (Basel). 2022-3-11
Cancers (Basel). 2023-6-22
Microsc Res Tech. 2024-4
Emerg Top Life Sci. 2021-5-14
Microsc Res Tech. 2017-1
Micromachines (Basel). 2025-8-8
Adv Intell Syst. 2025-8
Mechanobiol Med. 2024-2-22
Biophys Rev. 2025-4-3
Beilstein J Nanotechnol. 2022-12-9
Proc Natl Acad Sci U S A. 2022-6-28
J Dent Res. 2022-11
Trends Mol Med. 2022-9
Int J Mol Sci. 2022-3-28