Department of Biotechnology, St. Xavier's College, Kolkata, India.
PLoS One. 2013 Sep 16;8(9):e73923. doi: 10.1371/journal.pone.0073923. eCollection 2013.
Vibrio cholerae contains multiple copies of chemotaxis response regulator (VcCheY1-VcCheY4) whose functions are elusive yet. Although previous studies suggested that only VcCheY3 directly switches the flagellar rotation, the involvement of VcCheY4 in chemotaxis could not be ruled out. None of these studies, however, focused on the structure, mechanism of activation or molecular basis of FliM binding of the VcCheYs. From the crystal structures of Ca(2+) and Mg(2+) bound VcCheY3 we proposed the presence of a conformational barrier composed of the hydrophobic packing of W61, M88 and V106 and a unique hydrogen bond between T90 and Q97 in VcCheY3. Lesser fluorescence quenching and higher Km value of VcCheY3, compared to its mutants VcCheY3-Q97A and VcCheY3-Q97A/E100A supported our proposition. Furthermore, aforesaid biochemical data, in conjunction with the structure of VcCheY3-Q97A, indicated that the coupling of T90 and Q97 restricts the movement of T90 toward the active site reducing the stabilization of the bound phosphate and effectively promoting autodephosphorylation of VcCheY3. The structure of BeF3(-) activated VcCheY3 insisted us to argue that elevated temperature and/or adequacy of phosphate pool might break the barrier of the free-state VcCheY3 and the conformational changes, required for FliM binding, occur upon phosphorylation. Structure of VcCheY4 has been solved in the free and sulfated states. VcCheY4(sulf), containing a bound sulfate at the active site, appears to be more compact and stable with a longer α4 helix, shorter β4α4 loop and hydrogen bond between T82 and the sulfate compared to VcCheY4(free). While pull down assay of VcCheYs with VcFliMNM showed that only activated VcCheY3 can interact with VcFliMNM and VcCheY4 cannot, a knowledge based docking explained the molecular mechanism of the interactions between VcCheY3 and VcFliM and identified the limitations of VcCheY4 to interact with VcFliM even in its phosphorylated state.
霍乱弧菌含有多个趋化反应调节蛋白(VcCheY1-VcCheY4),其功能尚不清楚。尽管先前的研究表明只有 VcCheY3 直接切换鞭毛旋转,但不能排除 VcCheY4 在趋化作用中的参与。然而,这些研究都没有关注 VcCheY 的结构、激活机制或与 FliM 结合的分子基础。从 Ca(2+)和 Mg(2+)结合的 VcCheY3 的晶体结构中,我们提出了一个构象障碍的存在,该障碍由 W61、M88 和 V106 的疏水堆积和 VcCheY3 中 T90 和 Q97 之间独特的氢键组成。与突变体 VcCheY3-Q97A 和 VcCheY3-Q97A/E100A 相比,VcCheY3 的荧光猝灭程度较低,Km 值较高,这支持了我们的假设。此外,上述生化数据与 VcCheY3-Q97A 的结构相结合,表明 T90 和 Q97 的偶联限制了 T90 向活性部位的运动,降低了结合磷酸的稳定性,并有效地促进了 VcCheY3 的自动去磷酸化。BeF3(-)激活的 VcCheY3 的结构使我们坚信,升高的温度和/或磷酸池的充足性可能会打破游离状态的 VcCheY3 的障碍,并且在磷酸化时发生与 FliM 结合所需的构象变化。VcCheY4 的结构已在游离和硫酸盐状态下得到解决。VcCheY4(sulf)在活性部位含有一个结合的硫酸盐,与 VcCheY4(free)相比,它似乎更紧凑和稳定,α4 螺旋更长,β4α4 环更短,T82 与硫酸盐之间的氢键更强。尽管与 VcFliMNM 的 VcCheYs 下拉测定表明只有激活的 VcCheY3 可以与 VcFliMNM 相互作用,而 VcCheY4 不能,但基于知识的对接解释了 VcCheY3 与 VcFliM 之间相互作用的分子机制,并确定了 VcCheY4 即使在磷酸化状态下与 VcFliM 相互作用的局限性。