BioEnergy Science Center and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
Sci Signal. 2010 Jun 29;3(128):ra50. doi: 10.1126/scisignal.2000724.
The molecular machinery that controls chemotaxis in bacteria is substantially more complex than any other signal transduction system in prokaryotes, and its origins and variability among living species are unknown. We found that this multiprotein "chemotaxis system" is present in most prokaryotic species and evolved from simpler two-component regulatory systems that control prokaryotic transcription. We discovered, through genomic analysis, signaling systems intermediate between two-component systems and chemotaxis systems. Evolutionary genomics established central and auxiliary components of the chemotaxis system. While tracing its evolutionary history, we also developed a classification scheme that revealed more than a dozen distinct classes of chemotaxis systems, enabling future predictive modeling of chemotactic behavior in unstudied species.
控制细菌趋化性的分子机制比原核生物中任何其他信号转导系统都要复杂得多,其起源和在生物物种间的多样性尚不清楚。我们发现,这种多蛋白“趋化系统”存在于大多数原核生物物种中,并由控制原核转录的更简单的双组分调控系统进化而来。我们通过基因组分析发现了双组分系统和趋化系统之间的信号系统。进化基因组学确定了趋化系统的核心和辅助成分。在追溯其进化历史的同时,我们还开发了一种分类方案,揭示了十几种不同类型的趋化系统,使我们能够对未研究物种的趋化行为进行未来的预测建模。