Computer Science and Mathematics Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
J Chem Phys. 2013 Sep 21;139(11):114104. doi: 10.1063/1.4821176.
We revisit the derivation of electron transport theories with a focus on the projection operators chosen to partition the system. The prevailing choice of assigning each computational basis function to a region causes two problems. First, this choice generally results in oblique projection operators, which are non-Hermitian and violate implicit assumptions in the derivation. Second, these operators are defined with the physically insignificant basis set and, as such, preclude a well-defined basis set limit. We thus advocate for the selection of physically motivated, orthogonal projection operators (which are Hermitian) and present an operator-based derivation of electron transport theories. Unlike the conventional, matrix-based approaches, this derivation requires no knowledge of the computational basis set. In this process, we also find that common transport formalisms for nonorthogonal basis sets improperly decouple the exterior regions, leading to a short circuit through the system. We finally discuss the implications of these results for first-principles calculations of electron transport.
我们重新审视了电子输运理论的推导,重点关注用于划分系统的投影算符的选择。目前普遍选择将每个计算基函数分配给一个区域,这导致了两个问题。首先,这种选择通常会导致斜投影算符,它们是非厄米的,违反了推导中的隐含假设。其次,这些算符是用物理上不重要的基组来定义的,因此排除了一个明确定义的基组极限。因此,我们提倡选择具有物理意义的正交投影算符(即厄米的),并提出一种基于算符的电子输运理论推导方法。与传统的基于矩阵的方法不同,这种推导方法不需要知道计算基组。在这个过程中,我们还发现,非正交基组的常见输运形式不正确地将外部区域解耦,导致系统中的短路。最后,我们讨论了这些结果对电子输运的第一性原理计算的影响。