Suppr超能文献

深入了解放电氩气介导的生物膜失活。

Insights into discharge argon-mediated biofilm inactivation.

机构信息

a Department of Chemistry, Chemical Biology, and Biomedical Engineering , Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology , Hoboken , NJ 07030 , USA.

出版信息

Biofouling. 2013;29(10):1205-13. doi: 10.1080/08927014.2013.832222. Epub 2013 Sep 27.

Abstract

Formation of bacterial biofilms at solid-liquid interfaces creates numerous problems in biomedical sciences. Conventional sterilization and decontamination methods are not suitable for new and more sophisticated biomaterials. In this paper, the efficiency and effectiveness of gas discharges in the inactivation and removal of biofilms on biomaterials were studied. It was found that although discharge oxygen, nitrogen and argon all demonstrated excellent antibacterial and antibiofilm activity, gases with distinct chemical/physical properties underwent different mechanisms of action. Discharge oxygen- and nitrogen-mediated decontamination was associated with strong etching effects, which can cause live bacteria to relocate thus spreading contamination. On the contrary, although discharge argon at low powers maintained excellent antibacterial ability, it had negligible etching effects. Based on these results, an effective decontamination approach using discharge argon was established in which bacteria and biofilms were killed in situ and then removed from the contaminated biomaterials. This novel procedure is applicable for a wide range of biomaterials and biomedical devices in an in vivo and clinical setting.

摘要

在固液界面形成的细菌生物膜给生物医学科学带来了诸多问题。传统的灭菌和消毒方法并不适用于新型和更复杂的生物材料。本文研究了气体放电在生物材料上灭活和去除生物膜的效率和效果。结果发现,尽管放电氧气、氮气和氩气均表现出优异的抗菌和抗生物膜活性,但具有不同化学/物理性质的气体作用机制不同。放电氧气和氮气介导的消毒与强烈的蚀刻效应有关,这会导致活菌重新定位,从而传播污染。相反,尽管低功率的放电氩气保持了优异的抗菌能力,但它几乎没有蚀刻作用。基于这些结果,建立了一种使用放电氩气的有效消毒方法,其中原位杀死细菌和生物膜,然后将其从污染的生物材料中去除。这种新方法适用于体内和临床环境中广泛的生物材料和医疗器械。

相似文献

1
Insights into discharge argon-mediated biofilm inactivation.
Biofouling. 2013;29(10):1205-13. doi: 10.1080/08927014.2013.832222. Epub 2013 Sep 27.
2
Susceptibility of Staphylococcus aureus biofilms to reactive discharge gases.
Biofouling. 2011 Aug;27(7):763-72. doi: 10.1080/08927014.2011.602188.
4
Low power gas discharge plasma mediated inactivation and removal of biofilms formed on biomaterials.
Curr Appl Phys. 2013 Mar 20;13(Suppl 1):S12-S18. doi: 10.1016/j.cap.2012.12.024.
5
Efficacy of low-temperature plasma-activated gas disinfection against biofilm on contaminated GI endoscope channels.
Gastrointest Endosc. 2019 Jan;89(1):105-114. doi: 10.1016/j.gie.2018.08.009. Epub 2018 Aug 16.
6
Bacterial inactivation/sterilization by argon plasma treatment on contaminated titanium implant surfaces: In vitro study.
Med Oral Patol Oral Cir Bucal. 2016 Jan 1;21(1):e118-21. doi: 10.4317/medoral.20845.
7
A new dry-surface biofilm model: An essential tool for efficacy testing of hospital surface decontamination procedures.
J Microbiol Methods. 2015 Oct;117:171-6. doi: 10.1016/j.mimet.2015.08.003. Epub 2015 Aug 7.
8
Atmospheric pressure plasma: a high-performance tool for the efficient removal of biofilms.
PLoS One. 2012;7(8):e42539. doi: 10.1371/journal.pone.0042539. Epub 2012 Aug 6.
9
Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds.
J Med Microbiol. 2011 Jan;60(Pt 1):75-83. doi: 10.1099/jmm.0.020263-0. Epub 2010 Sep 9.

引用本文的文献

1
Plasma-initiated graft polymerization of carbon nanoparticles as nano-based drug delivery systems.
Biofouling. 2022 Jan;38(1):13-28. doi: 10.1080/08927014.2021.2008376. Epub 2021 Nov 28.
2
Methods Used for the Eradication of Staphylococcal Biofilms.
Antibiotics (Basel). 2019 Oct 4;8(4):174. doi: 10.3390/antibiotics8040174.
3
Plasma-activated water: antibacterial activity and artifacts?
Environ Sci Pollut Res Int. 2018 Sep;25(27):26699-26706. doi: 10.1007/s11356-017-9169-0. Epub 2017 May 24.

本文引用的文献

3
Staphylococcal biofilms: quest for the magic bullet.
Adv Appl Microbiol. 2012;81:63-87. doi: 10.1016/B978-0-12-394382-8.00002-2.
4
Nonthermal plasma sterilization of living and nonliving surfaces.
Annu Rev Biomed Eng. 2012;14:255-74. doi: 10.1146/annurev-bioeng-071811-150110. Epub 2012 May 3.
5
Analytical challenges of microbial biofilms on medical devices.
Anal Chem. 2012 May 1;84(9):3858-66. doi: 10.1021/ac2029997. Epub 2012 Mar 16.
6
The activity of a small lytic peptide PTP-7 on Staphylococcus aureus biofilms.
J Microbiol. 2011 Aug;49(4):663-8. doi: 10.1007/s12275-011-1013-5. Epub 2011 Sep 2.
7
Susceptibility of Staphylococcus aureus biofilms to reactive discharge gases.
Biofouling. 2011 Aug;27(7):763-72. doi: 10.1080/08927014.2011.602188.
8
Metabolite-enabled eradication of bacterial persisters by aminoglycosides.
Nature. 2011 May 12;473(7346):216-20. doi: 10.1038/nature10069.
10
Magnetically induced protein gradients on electrospun nanofibers.
Comb Chem High Throughput Screen. 2009 Aug;12(7):656-63. doi: 10.2174/138620709788923683. Epub 2009 Aug 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验