Suppr超能文献

金黄色葡萄球菌生物膜对反应性放电气体的敏感性。

Susceptibility of Staphylococcus aureus biofilms to reactive discharge gases.

机构信息

Department of Chemistry, Chemical Biology, and Biomedical Engineering, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA.

出版信息

Biofouling. 2011 Aug;27(7):763-72. doi: 10.1080/08927014.2011.602188.

Abstract

Formation of bacterial biofilms at solid-liquid interfaces creates numerous problems in both industrial and biomedical sciences. In this study, the susceptibility of Staphylococcus aureus biofilms to discharge gas generated from plasma was tested. It was found that despite distinct chemical/physical properties, discharge gases from oxygen, nitrogen, and argon demonstrated very potent and almost the same anti-biofilm activity. The bacterial cells in S. aureus biofilms were killed (>99.9%) by discharge gas within minutes of exposure. Under optimal experimental conditions, no bacteria and biofilm re-growth from discharge gas treated biofilms was found. Further studies revealed that the anti-biofilm activity of the discharge gas occurred by two distinct mechanisms: (1) killing bacteria in biofilms by causing severe cell membrane damage, and (2) damaging the extracellular polymeric matrix in the architecture of the biofilm to release biofilm from the surface of the solid substratum. Information gathered from this study provides an insight into the anti-biofilm mechanisms of plasma and confirms the applications of discharge gas in the treatment of biofilms and biofilm related bacterial infections.

摘要

在固液界面形成的细菌生物膜会给工业和生物医学科学带来诸多问题。本研究测试了金黄色葡萄球菌生物膜对等离子体产生的放电气体的敏感性。结果发现,尽管放电气体具有明显不同的化学/物理特性,但来自氧气、氮气和氩气的放电气体具有非常强大且几乎相同的抗生物膜活性。在接触放电气体几分钟内,生物膜中的细菌细胞(>99.9%)被杀死。在最佳实验条件下,未发现来自放电气体处理过的生物膜的细菌和生物膜再次生长。进一步的研究表明,放电气体的抗生物膜活性通过两种不同的机制发生:(1)通过严重破坏细胞膜导致生物膜中的细菌死亡,以及(2)破坏生物膜结构中的细胞外聚合物基质,从而将生物膜从固体基底表面释放出来。从这项研究中收集到的信息深入了解了等离子体的抗生物膜机制,并证实了放电气体在处理生物膜和与生物膜相关的细菌感染方面的应用。

相似文献

3
Insights into discharge argon-mediated biofilm inactivation.深入了解放电氩气介导的生物膜失活。
Biofouling. 2013;29(10):1205-13. doi: 10.1080/08927014.2013.832222. Epub 2013 Sep 27.

引用本文的文献

1
Orthopaedic applications of cold physical plasma.冷物理等离子体在骨科领域的应用
EFORT Open Rev. 2023 Jun 8;8(6):409-423. doi: 10.1530/EOR-22-0106.
7
Methods Used for the Eradication of Staphylococcal Biofilms.用于根除葡萄球菌生物膜的方法。
Antibiotics (Basel). 2019 Oct 4;8(4):174. doi: 10.3390/antibiotics8040174.

本文引用的文献

3
Effective bacterial inactivation using low temperature radio frequency plasma.低温射频等离子体有效杀菌。
Int J Pharm. 2010 Aug 30;396(1-2):17-22. doi: 10.1016/j.ijpharm.2010.05.045. Epub 2010 Jun 8.
4
10
Multidrug tolerance of biofilms and persister cells.生物被膜和持留菌细胞的多药耐受性。
Curr Top Microbiol Immunol. 2008;322:107-31. doi: 10.1007/978-3-540-75418-3_6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验