Theoretical Division, MS B213, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
Nat Commun. 2013;4:2515. doi: 10.1038/ncomms3515.
The Casimir force between bodies in vacuum can be understood as arising from their interaction with an infinite number of fluctuating electromagnetic quantum vacuum modes, resulting in a complex dependence on the shape and material of the interacting objects. Becoming dominant at small separations, the force has a significant role in nanomechanics and object manipulation at the nanoscale, leading to a considerable interest in identifying structures where the Casimir interaction behaves significantly different from the well-known attractive force between parallel plates. Here we experimentally demonstrate that by nanostructuring one of the interacting metal surfaces at scales below the plasma wavelength, an unexpected regime in the Casimir force can be observed. Replacing a flat surface with a deep metallic lamellar grating with sub-100 nm features strongly suppresses the Casimir force and for large inter-surfaces separations reduces it beyond what would be expected by any existing theoretical prediction.
在真空中,物体之间的卡西米尔力可以理解为它们与无限数量的波动电磁量子真空模式相互作用的结果,这导致了对相互作用物体的形状和材料的复杂依赖关系。在小的分离距离下,这种力在纳米力学和纳米尺度上的物体操纵中起着重要作用,因此人们对确定卡西米尔相互作用明显不同于平行板之间已知吸引力的结构产生了浓厚的兴趣。在这里,我们通过实验证明,通过在低于等离子体波长的尺度上对其中一个相互作用的金属表面进行纳米结构化,可以观察到卡西米尔力的一个意外状态。用具有小于 100nm 特征的深金属层状光栅代替平面,强烈抑制了卡西米尔力,并且对于大的表面分离,它的抑制作用超过了任何现有理论预测所预期的。