Pérez-Morelo Diego, Stange Alexander, Lally Richard W, Barrett Lawrence K, Imboden Matthias, Som Abhishek, Campbell David K, Aksyuk Vladimir A, Bishop David J
Department of ECE, Boston University, Boston, MA 02215 USA.
Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899 USA.
Microsyst Nanoeng. 2020 Dec 28;6:115. doi: 10.1038/s41378-020-00221-2. eCollection 2020.
In this article, we present a nanoelectromechanical system (NEMS) designed to detect changes in the Casimir energy. The Casimir effect is a result of the appearance of quantum fluctuations in an electromagnetic vacuum. Previous experiments have used nano- or microscale parallel plate capacitors to detect the Casimir force by measuring the small attractive force these fluctuations exert between the two surfaces. In this new set of experiments, we aim to directly detect the shifts in the Casimir energy in a vacuum due to the presence of the metallic parallel plates, one of which is a superconductor. A change in the Casimir energy of this configuration is predicted to shift the superconducting transition temperature ( ) because of the interaction between it and the superconducting condensation energy. In our experiment, we take a superconducting film, carefully measure its transition temperature, bring a conducting plate close to the film, create a Casimir cavity, and then measure the transition temperature again. The expected shifts are smaller than the normal shifts one sees in cycling superconducting films to cryogenic temperatures, so using a NEMS resonator in situ is the only practical way to obtain accurate, reproducible data. Using a thin Pb film and opposing Au surface, we observe no shift in >12 µK down to a minimum spacing of ~70 nm at zero applied magnetic field.
在本文中,我们展示了一种旨在检测卡西米尔能量变化的纳米机电系统(NEMS)。卡西米尔效应是电磁真空中量子涨落出现的结果。先前的实验使用纳米或微米尺度的平行板电容器,通过测量这些涨落在两个表面之间施加的小吸引力来检测卡西米尔力。在这组新实验中,我们旨在直接检测由于存在金属平行板(其中一个是超导体)而导致的真空中卡西米尔能量的变化。预计这种配置下卡西米尔能量的变化会由于其与超导凝聚能之间的相互作用而使超导转变温度( )发生偏移。在我们的实验中,我们取一块超导薄膜,仔细测量其转变温度,将一块导电板靠近薄膜,创建一个卡西米尔腔,然后再次测量转变温度。预期的偏移比在将超导薄膜循环至低温温度时看到的正常偏移要小,所以原位使用NEMS谐振器是获得准确、可重复数据的唯一实用方法。使用薄的铅膜和相对的金表面,在零外加磁场下,我们观察到在最小间距约为~70纳米时,转变温度( )在>12微开尔文的范围内没有偏移。