Suppr超能文献

检测转化精神病学登记处的临床和研究工作流程中的不和谐。

Detecting dissonance in clinical and research workflow for translational psychiatric registries.

机构信息

Department of Psychiatry, University of São Paulo Medical School, São Paulo, São Paulo, Brazil.

出版信息

PLoS One. 2013 Sep 20;8(9):e75167. doi: 10.1371/journal.pone.0075167. eCollection 2013.

Abstract

BACKGROUND

The interplay between the workflow for clinical tasks and research data collection is often overlooked, ultimately making it ineffective.

QUESTIONS/PURPOSES: To the best of our knowledge, no previous studies have developed standards that allow for the comparison of workflow models derived from clinical and research tasks toward the improvement of data collection processes.

METHODS

In this study we used the term dissonance for the occurrences where there was a discord between clinical and research workflows. We developed workflow models for a translational research study in psychiatry and the clinic where its data collection was carried out. After identifying points of dissonance between clinical and research models we derived a corresponding classification system that ultimately enabled us to re-engineer the data collection workflow. We considered (1) the number of patients approached for enrollment and (2) the number of patients enrolled in the study as indicators of efficiency in research workflow. We also recorded the number of dissonances before and after the workflow modification.

RESULTS

We identified 22 episodes of dissonance across 6 dissonance categories: actor, communication, information, artifact, time, and space. We were able to eliminate 18 episodes of dissonance and increase the number of patients approached and enrolled in research study trough workflow modification.

CONCLUSION

The classification developed in this study is useful for guiding the identification of dissonances and reveal modifications required to align the workflow of data collection and the clinical setting. The methodology described in this study can be used by researchers to standardize data collection process.

摘要

背景

临床任务和研究数据收集之间的工作流程相互作用常常被忽视,最终导致工作效率低下。

问题/目的:据我们所知,以前没有研究制定过标准,以比较源自临床和研究任务的工作流程模型,从而改进数据收集流程。

方法

在这项研究中,我们将临床和研究工作流程之间存在差异的情况称为“不和谐”。我们为精神病学的转化研究和在该科室进行数据收集的临床环境开发了工作流程模型。在确定临床和研究模型之间的不和谐点后,我们得出了一个相应的分类系统,最终使我们能够重新设计数据收集工作流程。我们将(1)入组患者的数量和(2)入组研究的患者数量作为研究工作流程效率的指标。我们还记录了工作流程修改前后的不和谐次数。

结果

我们在 6 个不和谐类别中发现了 22 个不和谐事件:参与者、沟通、信息、人工制品、时间和空间。通过工作流程修改,我们消除了 18 个不和谐事件,并增加了研究中入组的患者数量。

结论

本研究中开发的分类对于指导识别不和谐事件以及揭示对齐数据收集工作流程和临床环境所需的修改非常有用。本研究中描述的方法可用于研究人员标准化数据收集过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3ae/3779159/8323f6511b29/pone.0075167.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验