Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65409-0040, USA.
Comput Med Imaging Graph. 2013 Oct-Dec;37(7-8):475-87. doi: 10.1016/j.compmedimag.2013.08.001. Epub 2013 Sep 1.
Expert pathologists commonly perform visual interpretation of histology slides for cervix tissue abnormality diagnosis. We investigated an automated, localized, fusion-based approach for cervix histology image analysis for squamous epithelium classification into Normal, CIN1, CIN2, and CIN3 grades of cervical intraepithelial neoplasia (CIN). The epithelium image analysis approach includes medial axis determination, vertical segment partitioning as medial axis orthogonal cuts, individual vertical segment feature extraction and classification, and image-based classification using a voting scheme fusing the vertical segment CIN grades. Results using 61 images showed at least 15.5% CIN exact grade classification improvement using the localized vertical segment fusion versus global image features.
专家病理学家通常对宫颈组织异常进行组织学切片的目视判读。我们研究了一种自动化、局部化、基于融合的方法,用于宫颈组织学图像分析,以将鳞状上皮分类为正常、CIN1、CIN2 和 CIN3 级宫颈上皮内瘤变 (CIN)。上皮图像分析方法包括中轴确定、垂直段分割作为中轴正交切割、单个垂直段特征提取和分类,以及使用融合垂直段 CIN 级别的投票方案进行基于图像的分类。使用 61 张图像的结果表明,与全局图像特征相比,使用局部化的垂直段融合可至少提高 15.5%的 CIN 确切分级分类。