Suppr超能文献

基于图像颜色和纹理特征的皮肤病识别方法

Skin Disease Recognition Method Based on Image Color and Texture Features.

作者信息

Wei Li-Sheng, Gan Quan, Ji Tao

机构信息

School of Electrical and Engineer, Anhui Polytechnic University, Wuhu 241000, China.

出版信息

Comput Math Methods Med. 2018 Aug 26;2018:8145713. doi: 10.1155/2018/8145713. eCollection 2018.

Abstract

Skin diseases have a serious impact on people's life and health. Current research proposes an efficient approach to identify singular type of skin diseases. It is necessary to develop automatic methods in order to increase the accuracy of diagnosis for multitype skin diseases. In this paper, three type skin diseases such as herpes, dermatitis, and psoriasis skin disease could be identified by a new recognition method. Initially, skin images were preprocessed to remove noise and irrelevant background by filtering and transformation. Then the method of grey-level co-occurrence matrix (GLCM) was introduced to segment images of skin disease. The texture and color features of different skin disease images could be obtained accurately. Finally, by using the support vector machine (SVM) classification method, three types of skin diseases were identified. The experimental results demonstrate the effectiveness and feasibility of the proposed method.

摘要

皮肤疾病对人们的生活和健康有着严重影响。当前的研究提出了一种识别单一类型皮肤疾病的有效方法。为了提高对多种类型皮肤疾病的诊断准确性,开发自动诊断方法很有必要。本文中,一种新的识别方法能够识别三种类型的皮肤疾病,如疱疹、皮炎和牛皮癣。首先,通过滤波和变换对皮肤图像进行预处理,以去除噪声和无关背景。然后引入灰度共生矩阵(GLCM)方法对皮肤疾病图像进行分割。可以准确获取不同皮肤疾病图像的纹理和颜色特征。最后,使用支持向量机(SVM)分类方法识别出三种类型的皮肤疾病。实验结果证明了该方法的有效性和可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72c5/6129338/94f35582d49e/CMMM2018-8145713.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验