Suppr超能文献

多核苷酸磷酸化酶(PNPase)中一个保守环对 RNA 和 ADP/磷酸的结合都很重要。

A conserved loop in polynucleotide phosphorylase (PNPase) essential for both RNA and ADP/phosphate binding.

机构信息

Dipartimento di Bioscienze, Università degli Studi di Milano, Milan 20133, Italy.

Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan 20126, Italy.

出版信息

Biochimie. 2014 Feb;97:49-59. doi: 10.1016/j.biochi.2013.09.018. Epub 2013 Sep 26.

Abstract

Polynucleotide phosphorylase (PNPase) reversibly catalyzes RNA phosphorolysis and polymerization of nucleoside diphosphates. Its homotrimeric structure forms a central channel where RNA is accommodated. Each protomer core is formed by two paralogous RNase PH domains: PNPase1, whose function is largely unknown, hosts a conserved FFRR loop interacting with RNA, whereas PNPase2 bears the putative catalytic site, ∼20 Å away from the FFRR loop. To date, little is known regarding PNPase catalytic mechanism. We analyzed the kinetic properties of two Escherichia coli PNPase mutants in the FFRR loop (R79A and R80A), which exhibited a dramatic increase in Km for ADP/Pi binding, but not for poly(A), suggesting that the two residues may be essential for binding ADP and Pi. However, both mutants were severely impaired in shifting RNA electrophoretic mobility, implying that the two arginines contribute also to RNA binding. Additional interactions between RNA and other PNPase domains (such as KH and S1) may preserve the enzymatic activity in R79A and R80A mutants. Inspection of enzyme structure showed that PNPase has evolved a long-range acting hydrogen bonding network that connects the FFRR loop with the catalytic site via the F380 residue. This hypothesis was supported by mutation analysis. Phylogenetic analysis of PNPase domains and RNase PH suggests that such network is a unique feature of PNPase1 domain, which coevolved with the paralogous PNPase2 domain.

摘要

多核苷酸磷酸化酶(PNPase)可逆地催化 RNA 的磷酸解和核苷二磷酸的聚合。其三聚体结构形成一个容纳 RNA 的中央通道。每个三聚体核心由两个类似的 RNase PH 结构域组成:PNPase1 的功能在很大程度上尚不清楚,其宿主具有保守的 FFRR 环与 RNA 相互作用,而 PNPase2 则具有假定的催化位点,距离 FFRR 环约 20 Å。迄今为止,对于 PNPase 的催化机制知之甚少。我们分析了两个大肠杆菌 PNPase 突变体在 FFRR 环中的动力学特性(R79A 和 R80A),它们对 ADP/Pi 结合的 Km 值显著增加,但对 poly(A) 的 Km 值没有增加,这表明这两个残基可能对结合 ADP 和 Pi 是必不可少的。然而,这两个突变体在改变 RNA 电泳迁移率方面都受到严重损害,这意味着这两个精氨酸也有助于 RNA 结合。RNA 与 PNPase 其他结构域(如 KH 和 S1)之间的额外相互作用可能会在 R79A 和 R80A 突变体中保留酶的活性。对酶结构的检查表明,PNPase 已经进化出一个长程作用的氢键网络,通过 F380 残基将 FFRR 环与催化位点连接起来。这一假设得到了突变分析的支持。PNPase 结构域和 RNase PH 的系统发育分析表明,这种网络是 PNPase1 结构域的一个独特特征,它与类似的 PNPase2 结构域共同进化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验