Suppr超能文献

多核苷酸磷酸化酶中保守的S1和KH结构域的功能

Function of the conserved S1 and KH domains in polynucleotide phosphorylase.

作者信息

Stickney Leigh M, Hankins Janet S, Miao Xin, Mackie George A

机构信息

Department of Biochemistry & Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.

出版信息

J Bacteriol. 2005 Nov;187(21):7214-21. doi: 10.1128/JB.187.21.7214-7221.2005.

Abstract

We have examined the roles of the conserved S1 and KH RNA binding motifs in the widely dispersed prokaryotic exoribonuclease polynucleotide phosphorylase (PNPase). These domains can be released from the enzyme by mild proteolysis or by truncation of the gene. Using purified recombinant enzymes, we have assessed the effects of specific deletions on RNA binding, on activity against a synthetic substrate under multiple-turnover conditions, and on the ability of truncated forms of PNPase to form a minimal RNA degradosome with RNase E and RhlB. Deletion of the S1 domain reduces the apparent activity of the enzyme by almost 70-fold under low-ionic-strength conditions and limits the enzyme to digest a single substrate molecule. Activity and product release are substantially regained at higher ionic strengths. This deletion also reduces the affinity of the enzyme for RNA, without affecting the enzyme's ability to bind to RNase E. Deletion of the KH domain produces similar, but less severe, effects, while deletion of both the S1 and KH domains accentuates the loss of activity, product release, and RNA binding but has no effect on binding to RNase E. We propose that the S1 domain, possibly arrayed with the KH domain, forms an RNA binding surface that facilitates substrate recognition and thus indirectly potentiates product release. The present data as well as prior observations can be rationalized by a two-step model for substrate binding.

摘要

我们研究了保守的S1和KH RNA结合基序在广泛分布的原核外切核糖核酸酶多核苷酸磷酸化酶(PNPase)中的作用。这些结构域可通过温和的蛋白酶解或基因截短从酶中释放出来。我们使用纯化的重组酶,评估了特定缺失对RNA结合的影响、在多轮反应条件下对合成底物的活性以及截短形式的PNPase与核糖核酸酶E和RhlB形成最小RNA降解体的能力。在低离子强度条件下,S1结构域的缺失使酶的表观活性降低了近70倍,并限制酶只能消化单个底物分子。在较高离子强度下,活性和产物释放基本恢复。这种缺失还降低了酶对RNA的亲和力,但不影响酶与核糖核酸酶E结合的能力。KH结构域的缺失产生了类似但不太严重的影响,而S1和KH结构域都缺失则加剧了活性、产物释放和RNA结合的丧失,但对与核糖核酸酶E的结合没有影响。我们提出,S1结构域可能与KH结构域排列在一起,形成一个RNA结合表面,促进底物识别,从而间接增强产物释放。目前的数据以及先前的观察结果可以通过底物结合的两步模型来解释。

相似文献

1
Function of the conserved S1 and KH domains in polynucleotide phosphorylase.
J Bacteriol. 2005 Nov;187(21):7214-21. doi: 10.1128/JB.187.21.7214-7221.2005.
4
A conserved loop in polynucleotide phosphorylase (PNPase) essential for both RNA and ADP/phosphate binding.
Biochimie. 2014 Feb;97:49-59. doi: 10.1016/j.biochi.2013.09.018. Epub 2013 Sep 26.
5
The assembly and distribution in vivo of the Escherichia coli RNA degradosome.
Biochimie. 2013 Nov;95(11):2034-41. doi: 10.1016/j.biochi.2013.07.022. Epub 2013 Aug 6.
6
Studies of the RNA degradosome-organizing domain of the Escherichia coli ribonuclease RNase E.
J Mol Biol. 2004 Jul 23;340(5):965-79. doi: 10.1016/j.jmb.2004.05.046.
7
RhlB helicase rather than enolase is the beta-subunit of the Escherichia coli polynucleotide phosphorylase (PNPase)-exoribonucleolytic complex.
Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16590-5. doi: 10.1073/pnas.0500994102. Epub 2005 Nov 7.
8
A mutation in polynucleotide phosphorylase from Escherichia coli impairing RNA binding and degradosome stability.
Nucleic Acids Res. 2004 Feb 12;32(3):1006-17. doi: 10.1093/nar/gkh268. Print 2004.
9
Molecular recognition of RhlB and RNase D in the Caulobacter crescentus RNA degradosome.
Nucleic Acids Res. 2014 Dec 1;42(21):13294-305. doi: 10.1093/nar/gku1134. Epub 2014 Nov 11.
10
S1 and KH domains of polynucleotide phosphorylase determine the efficiency of RNA binding and autoregulation.
J Bacteriol. 2013 May;195(9):2021-31. doi: 10.1128/JB.00062-13. Epub 2013 Mar 1.

引用本文的文献

1
Nucleic acid-binding KH domain proteins influence a spectrum of biological pathways including as part of membrane-localized complexes.
J Struct Biol X. 2024 Jun 27;10:100106. doi: 10.1016/j.yjsbx.2024.100106. eCollection 2024 Dec.
2
Mitochondrial sequencing identifies long noncoding RNA features that promote binding to PNPase.
Am J Physiol Cell Physiol. 2024 Aug 1;327(2):C221-C236. doi: 10.1152/ajpcell.00648.2023. Epub 2024 Jun 3.
3
Computational evolution of an RNA-binding protein towards enhanced oxidized-RNA binding.
Comput Struct Biotechnol J. 2019 Dec 27;18:137-152. doi: 10.1016/j.csbj.2019.12.003. eCollection 2020.
4
The Bacterial Counterparts of the Eukaryotic Exosome: An Evolutionary Perspective.
Methods Mol Biol. 2020;2062:37-46. doi: 10.1007/978-1-4939-9822-7_2.
6
Polynucleotide phosphorylase: Not merely an RNase but a pivotal post-transcriptional regulator.
PLoS Genet. 2018 Oct 11;14(10):e1007654. doi: 10.1371/journal.pgen.1007654. eCollection 2018 Oct.
7
Exploring the mitochondrial microRNA import pathway through Polynucleotide Phosphorylase (PNPase).
J Mol Cell Cardiol. 2017 Sep;110:15-25. doi: 10.1016/j.yjmcc.2017.06.012. Epub 2017 Jul 11.
10
Direct observation of processive exoribonuclease motion using optical tweezers.
Proc Natl Acad Sci U S A. 2015 Dec 8;112(49):15101-6. doi: 10.1073/pnas.1514028112. Epub 2015 Nov 23.

本文引用的文献

2
Modulation of yersinia type three secretion system by the S1 domain of polynucleotide phosphorylase.
J Biol Chem. 2005 Jan 7;280(1):156-63. doi: 10.1074/jbc.M405662200. Epub 2004 Oct 26.
4
Overexpression and purification of untagged polynucleotide phosphorylases.
Protein Expr Purif. 2003 Dec;32(2):202-9. doi: 10.1016/j.pep.2003.08.005.
5
A mutation in polynucleotide phosphorylase from Escherichia coli impairing RNA binding and degradosome stability.
Nucleic Acids Res. 2004 Feb 12;32(3):1006-17. doi: 10.1093/nar/gkh268. Print 2004.
6
The poly(A) binding protein Hfq protects RNA from RNase E and exoribonucleolytic degradation.
Nucleic Acids Res. 2003 Dec 15;31(24):7302-10. doi: 10.1093/nar/gkg915.
7
Nucleic acid recognition by OB-fold proteins.
Annu Rev Biophys Biomol Struct. 2003;32:115-33. doi: 10.1146/annurev.biophys.32.110601.142506. Epub 2003 Feb 18.
8
OB-fold domains: a snapshot of the evolution of sequence, structure and function.
Curr Opin Struct Biol. 2002 Dec;12(6):794-801. doi: 10.1016/s0959-440x(02)00392-5.
9
Two distinct regions on the surface of an RNA-binding domain are crucial for RNase E function.
Mol Microbiol. 2002 Nov;46(4):959-69. doi: 10.1046/j.1365-2958.2002.03231.x.
10
Mutational analysis of polynucleotide phosphorylase from Escherichia coli.
J Mol Biol. 2002 Aug 16;321(3):397-409. doi: 10.1016/s0022-2836(02)00645-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验