Department of Environmental Science and Technology, Cranfield University, Cranfield, MK43 0AL Bedfordshire, United Kingdom.
Environ Pollut. 2014 Jan;184:298-305. doi: 10.1016/j.envpol.2013.08.039. Epub 2013 Sep 26.
In this study, we demonstrate that partial least-squares regression analysis with full cross-validation of spectral reflectance data estimates the amount of polycyclic aromatic hydrocarbons in petroleum-contaminated tropical rainforest soils. We applied the approach to 137 field-moist intact soil samples collected from three oil spill sites in Ogoniland in the Niger Delta province (5.317°N, 6.467°E), Nigeria. We used sequential ultrasonic solvent extraction-gas chromatography as the reference chemical method. We took soil diffuse reflectance spectra with a mobile fibre-optic visible and near-infrared spectrophotometer (350-2500 nm). Independent validation of combined data from studied sites showed reasonable prediction precision (root-mean-square error of prediction = 1.16-1.95 mg kg(-1), ratio of prediction deviation = 1.86-3.12, and validation r(2) = 0.77-0.89). This suggests that the methodology may be useful for rapid assessment of the spatial variability of polycyclic aromatic hydrocarbons in petroleum-contaminated soils in the Niger Delta to inform risk assessment and remediation.
在这项研究中,我们证明了采用全交叉验证的偏最小二乘回归分析对光谱反射率数据进行估算,可以估计受石油污染的热带雨林土壤中多环芳烃的含量。我们将该方法应用于从尼日利亚尼日尔三角洲奥戈尼兰三个溢油地点采集的 137 个野外原状土壤样本(5.317°N,6.467°E)。我们使用顺序超声溶剂萃取-气相色谱法作为参考化学方法。我们使用移动光纤可见近红外分光光度计(350-2500nm)采集土壤漫反射光谱。对研究地点的综合数据进行独立验证,结果表明预测精度合理(预测均方根误差=1.16-1.95mgkg-1,预测偏差比=1.86-3.12,验证 r2=0.77-0.89)。这表明该方法可能有助于快速评估尼日尔三角洲受石油污染土壤中多环芳烃的空间变异性,从而为风险评估和修复提供信息。