Suppr超能文献

利用可见近红外光谱和随机森林回归预测污染土壤中复杂化学混合物的生物可利用性变化。

Predicting bioavailability change of complex chemical mixtures in contaminated soils using visible and near-infrared spectroscopy and random forest regression.

机构信息

Cranfield University, School of Water, Energy and Environment, Cranfield, MK430AL, UK.

Department of Environment, Ghent University, Coupure 653, 9000, Gent, Belgium.

出版信息

Sci Rep. 2019 Mar 14;9(1):4492. doi: 10.1038/s41598-019-41161-w.

Abstract

A number of studies have shown that visible and near infrared spectroscopy (VIS-NIRS) offers a rapid on-site measurement tool for the determination of total contaminant concentration of petroleum hydrocarbons compounds (PHC), heavy metals and metalloids (HM) in soil. However none of them have yet assessed the feasibility of using VIS-NIRS coupled to random forest (RF) regression for determining both the total and bioavailable concentrations of complex chemical mixtures. Results showed that the predictions of the total concentrations of polycyclic aromatic hydrocarbons (PAH), PHC, and alkanes (ALK) were very good, good and fair, and in contrast, the predictions of the bioavailable concentrations of the PAH and PHC were only fair, and poor for ALK. A large number of trace elements, mainly lead (Pb), aluminium (Al), nickel (Ni), chromium (Cr), cadmium (Cd), iron (Fe) and zinc (Zn) were predicted with very good or good accuracy. The prediction results of the total HMs were also better than those of the bioavailable concentrations. Overall, the results demonstrate that VIS-NIR DRS coupled to RF is a promising rapid measurement tool to inform both the distribution and bioavailability of complex chemical mixtures without the need of collecting soil samples and lengthy extraction for further analysis.

摘要

一些研究表明,可见近红外光谱(VIS-NIRS)为快速现场测量工具,可用于测定土壤中石油烃化合物(PHC)、重金属和类金属(HM)的总污染物浓度。然而,目前还没有研究评估将 VIS-NIRS 与随机森林(RF)回归相结合来测定复杂化学混合物的总浓度和生物可利用浓度的可行性。结果表明,多环芳烃(PAH)、PHC 和烷烃(ALK)总浓度的预测结果非常好、好和一般,相比之下,PAH 和 PHC 的生物可利用浓度的预测结果仅为一般,而 ALK 的预测结果则较差。大量微量元素,主要是铅(Pb)、铝(Al)、镍(Ni)、铬(Cr)、镉(Cd)、铁(Fe)和锌(Zn)的预测精度非常好或好。总 HM 的预测结果也优于生物可利用浓度的预测结果。总体而言,结果表明,VIS-NIR DRS 与 RF 相结合是一种很有前途的快速测量工具,可以在无需采集土壤样品和进行冗长的提取以进行进一步分析的情况下,提供复杂化学混合物的分布和生物可利用性信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae1/6418180/fc2c9e29c52e/41598_2019_41161_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验