*Institut de Biologie des Plantes, UMR CNRS 8618, Saclay Plant Sciences, Université Paris-Sud, 91405 Orsay, France.
Biochem J. 2014 Jan 1;457(1):117-25. doi: 10.1042/BJ20130337.
In chloroplasts, redox regulation of enzyme activities by TRXs (thioredoxins) allows the co-ordination of light/dark metabolisms such as the reductive (so-called Calvin-Benson) pathway and the OPPP (oxidative pentose phosphate pathway). Although the molecular mechanisms underlying the redox regulation of several TRX-regulated enzymes have been investigated in detail, only partial information was available for plastidial G6PDH (glucose-6-phosphate dehydrogenase) catalysing the first and rate-limiting step of the OPPP. In the present study, we investigated changes in catalytic and structural properties undergone by G6PDH1 from Arabidopsis thaliana upon treatment with TRX f1, the most efficient regulator of the enzyme that did not show a stable interaction with its target. We found that the formation of the regulatory disulfide bridge that leads to activation of the enzyme allows better substrate accessibility to the active site and strongly modifies the cofactor-binding properties. Structural modelling and data from biochemical and biophysical studies of site-directed mutant proteins support a mechanism in which the positioning/function of the highly conserved Arg(131) in the cofactor-binding site can be directly influenced by the redox state of the adjacent regulatory disulfide bridge. These findings constitute another example of modifications to catalytic properties of a chloroplastic enzyme upon redox regulation, but by a mechanism unique to G6PDH.
在叶绿体中,TRX(硫氧还蛋白)对酶活性的氧化还原调节允许协调光/暗代谢,如还原(所谓的卡尔文-本森)途径和 OPPP(氧化戊糖磷酸途径)。虽然已经详细研究了几种 TRX 调节的酶的氧化还原调节的分子机制,但对于催化 OPPP 的第一步和限速步骤的质体 G6PDH(葡萄糖-6-磷酸脱氢酶)的信息仅部分可用。在本研究中,我们研究了拟南芥 G6PDH1 在 TRX f1 处理下发生的催化和结构特性变化,TRX f1 是该酶最有效的调节剂,与靶标没有稳定相互作用。我们发现,导致酶激活的调节二硫键的形成允许更好地接近活性位点的底物,并强烈改变辅因子结合特性。结构建模和来自定点突变蛋白的生化和生物物理研究的数据支持这样一种机制,即高度保守的 Arg(131)在辅因子结合位点的定位/功能可以直接受到相邻调节二硫键的氧化还原状态的影响。这些发现构成了另一个例子,即在氧化还原调节下,质体酶的催化特性发生变化,但这是 G6PDH 特有的机制。