University of Münster, Department of Biology, Institute of Plant Biology and Biotechnology, Molecular Physiology of Plants, Schlossplatz 7, D-48149 Münster, Germany.
J Exp Bot. 2024 May 20;75(10):2848-2866. doi: 10.1093/jxb/erae077.
The oxidative pentose-phosphate pathway (OPPP) retrieves NADPH from glucose-6-phosphate, which is important in chloroplasts at night and in plastids of heterotrophic tissues. We previously studied how OPPP enzymes may transiently locate to peroxisomes, but how this is achieved for the third enzyme remained unclear. By extending our genetic approach, we demonstrated that Arabidopsis isoform 6-phosphogluconate dehydrogenase 2 (PGD2) is indispensable in peroxisomes during fertilization, and investigated why all PGD-reporter fusions show a mostly cytosolic pattern. A previously published interaction of a plant PGD with thioredoxin m was confirmed using Trxm2 for yeast two-hybrid (Y2H) and bimolecular fluorescent complementation (BiFC) assays, and medial reporter fusions (with both ends accessible) proved to be beneficial for studying peroxisomal targeting of PGD2. Of special importance were phosphomimetic changes at Thr6, resulting in a clear targeting switch to peroxisomes, while a similar change at position Ser7 in PGD1 conferred plastid import. Apparently, efficient subcellular localization can be achieved by activating an unknown kinase, either early after or during translation. N-terminal phosphorylation of PGD2 interfered with dimerization in the cytosol, thus allowing accessibility of the C-terminal peroxisomal targeting signal (PTS1). Notably, we identified amino acid positions that are conserved among plant PGD homologues, with PTS1 motifs first appearing in ferns, suggesting a functional link to fertilization during the evolution of seed plants.
氧化戊糖磷酸途径(OPPP)从葡萄糖-6-磷酸中回收 NADPH,这在叶绿体的夜间和异养组织的质体中很重要。我们之前研究了 OPPP 酶如何暂时定位到过氧化物酶体,但第三个酶如何实现这一点仍不清楚。通过扩展我们的遗传方法,我们证明了拟南芥同工型 6-磷酸葡萄糖酸脱氢酶 2(PGD2)在受精过程中是过氧化物酶体中不可或缺的,并且研究了为什么所有 PGD-报告基因融合都显示出主要的细胞质模式。使用 Trxm2 进行酵母双杂交(Y2H)和双分子荧光互补(BiFC)测定,证实了先前发表的植物 PGD 与硫氧还蛋白 m 的相互作用,并且中间报告基因融合(两端均可访问)被证明有利于研究 PGD2 的过氧化物酶体靶向。特别重要的是 Thr6 的磷酸模拟变化,导致明显的靶向开关到过氧化物酶体,而在 PGD1 位置类似的 Ser7 变化赋予质体导入。显然,通过激活未知激酶,可以在翻译后早期或翻译过程中实现有效的亚细胞定位。PGD2 的 N 端磷酸化干扰了细胞质中的二聚化,从而允许 C 端过氧化物酶体靶向信号(PTS1)的可及性。值得注意的是,我们确定了在植物 PGD 同源物中保守的氨基酸位置,PTS1 基序首先出现在蕨类植物中,这表明在种子植物的进化过程中与受精有功能联系。