Windt Johann, Ardern Clare L, Gabbett Tim J, Khan Karim M, Cook Chad E, Sporer Ben C, Zumbo Bruno D
Experimental Medicine Program, University of British Columbia, Vancouver, British Columbia, Canada.
United States Olympic Committee, Colorado Springs, Colorado, USA.
BMJ Open. 2018 Oct 2;8(10):e022626. doi: 10.1136/bmjopen-2018-022626.
To systematically identify and qualitatively review the statistical approaches used in prospective cohort studies of team sports that reported intensive longitudinal data (ILD) (>20 observations per athlete) and examined the relationship between athletic workloads and injuries. Since longitudinal research can be improved by aligning the (1) theoretical model, (2) temporal design and (3) statistical approach, we reviewed the statistical approaches used in these studies to evaluate how closely they aligned these three components.
Methodological review.
After finding 6 systematic reviews and 1 consensus statement in our systematic search, we extracted 34 original prospective cohort studies of team sports that reported ILD (>20 observations per athlete) and examined the relationship between athletic workloads and injuries. Using Professor Linda Collins' three-part framework of aligning the theoretical model, temporal design and statistical approach, we qualitatively assessed how well the statistical approaches aligned with the intensive longitudinal nature of the data, and with the underlying theoretical model. Finally, we discussed the implications of each statistical approach and provide recommendations for future research.
Statistical methods such as correlations, t-tests and simple linear/logistic regression were commonly used. However, these methods did not adequately address the (1) themes of theoretical models underlying workloads and injury, nor the (2) temporal design challenges (ILD). Although time-to-event analyses (eg, Cox proportional hazards and frailty models) and multilevel modelling are better-suited for ILD, these were used in fewer than a 10% of the studies (n=3).
Rapidly accelerating availability of ILD is the norm in many fields of healthcare delivery and thus health research. These data present an opportunity to better address research questions, especially when appropriate statistical analyses are chosen.
系统识别并定性综述团队运动前瞻性队列研究中所使用的统计方法,这些研究报告了密集纵向数据(ILD,每名运动员>20次观察)并考察了运动负荷与损伤之间的关系。由于纵向研究可通过使(1)理论模型、(2)时间设计和(3)统计方法保持一致而得到改进,因此我们对这些研究中使用的统计方法进行了综述,以评估它们在多大程度上使这三个要素保持一致。
方法学综述。
在系统检索中找到6篇系统综述和1篇共识声明后,我们提取了34项团队运动的原始前瞻性队列研究,这些研究报告了ILD(每名运动员>20次观察)并考察了运动负荷与损伤之间的关系。我们使用琳达·柯林斯教授的三部分框架,即使理论模型、时间设计和统计方法保持一致,定性评估统计方法与数据的密集纵向性质以及潜在理论模型的契合程度。最后,我们讨论了每种统计方法的意义并为未来研究提供建议。
常用的统计方法如相关性分析、t检验和简单线性/逻辑回归。然而,这些方法并未充分解决(1)运动负荷和损伤背后理论模型的主题,也未解决(2)时间设计挑战(ILD)。尽管事件发生时间分析(如Cox比例风险模型和脆弱模型)和多水平建模更适合ILD,但使用这些方法的研究不到10%(n = 3)。
在许多医疗保健提供领域以及健康研究中,ILD的快速加速可得已成为常态。这些数据为更好地解决研究问题提供了机会,尤其是在选择了适当的统计分析方法时。