Suppr超能文献

非定向补偿性可塑性导致严重脊髓损伤后神经元功能障碍。

Undirected compensatory plasticity contributes to neuronal dysfunction after severe spinal cord injury.

机构信息

1 Neurology Department, University of Zurich, Zurich, Switzerland.

出版信息

Brain. 2013 Nov;136(Pt 11):3347-61. doi: 10.1093/brain/awt204. Epub 2013 Sep 29.

Abstract

Severe spinal cord injury in humans leads to a progressive neuronal dysfunction in the chronic stage of the injury. This dysfunction is characterized by premature exhaustion of muscle activity during assisted locomotion, which is associated with the emergence of abnormal reflex responses. Here, we hypothesize that undirected compensatory plasticity within neural systems caudal to a severe spinal cord injury contributes to the development of neuronal dysfunction in the chronic stage of the injury. We evaluated alterations in functional, electrophysiological and neuromorphological properties of lumbosacral circuitries in adult rats with a staggered thoracic hemisection injury. In the chronic stage of the injury, rats exhibited significant neuronal dysfunction, which was characterized by co-activation of antagonistic muscles, exhaustion of locomotor muscle activity, and deterioration of electrochemically-enabled gait patterns. As observed in humans, neuronal dysfunction was associated with the emergence of abnormal, long-latency reflex responses in leg muscles. Analyses of circuit, fibre and synapse density in segments caudal to the spinal cord injury revealed an extensive, lamina-specific remodelling of neuronal networks in response to the interruption of supraspinal input. These plastic changes restored a near-normal level of synaptic input within denervated spinal segments in the chronic stage of injury. Syndromic analysis uncovered significant correlations between the development of neuronal dysfunction, emergence of abnormal reflexes, and anatomical remodelling of lumbosacral circuitries. Together, these results suggest that spinal neurons deprived of supraspinal input strive to re-establish their synaptic environment. However, this undirected compensatory plasticity forms aberrant neuronal circuits, which may engage inappropriate combinations of sensorimotor networks during gait execution.

摘要

人类严重的脊髓损伤会导致损伤慢性期的神经元功能进行性障碍。这种功能障碍的特征是辅助运动时肌肉活动过早衰竭,这与异常反射反应的出现有关。在这里,我们假设严重脊髓损伤后神经系统内的无定向代偿性可塑性有助于损伤慢性期神经元功能障碍的发展。我们评估了交错性胸半切损伤成年大鼠腰骶回路的功能、电生理和神经形态学特性的变化。在损伤的慢性期,大鼠表现出明显的神经元功能障碍,其特征是拮抗肌的共同激活、运动肌肉活动的衰竭以及电化学步态模式的恶化。与人类观察到的一样,神经元功能障碍与腿部肌肉异常、长潜伏期反射反应的出现有关。对脊髓损伤以下节段的回路、纤维和突触密度的分析表明,在中断了来自上位脑的输入后,神经元网络发生了广泛的、层特异性重塑。这些塑性变化在损伤的慢性期恢复了去神经节段内接近正常水平的突触输入。综合征分析发现,神经元功能障碍的发展、异常反射的出现以及腰骶回路的解剖重塑之间存在显著相关性。总之,这些结果表明,失去上位脑输入的脊髓神经元试图重新建立其突触环境。然而,这种无定向的代偿性可塑性形成了异常的神经元回路,这可能会在步态执行期间涉及到感觉运动网络的不当组合。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验