Suppr超能文献

代偿区域的自组织募集可使中风后残余运动功能最大化。

Self-organizing recruitment of compensatory areas maximizes residual motor performance post-stroke.

作者信息

Lee Kevin, Barradas Victor, Schweighofer Nicolas

机构信息

Computer Science, University of Southern California, Los Angeles, USA.

Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.

出版信息

bioRxiv. 2024 Jul 2:2024.06.28.601213. doi: 10.1101/2024.06.28.601213.

Abstract

Whereas the orderly recruitment of compensatory motor cortical areas after stroke depends on the size of the motor cortex lesion affecting arm and hand movements, the mechanisms underlying this reorganization are unknown. Here, we hypothesized that the recruitment of compensatory areas results from the motor system's goal to optimize performance given the anatomical constraints before and after the lesion. This optimization is achieved through two complementary plastic processes: a homeostatic regulation process, which maximizes information transfer in sensory-motor networks, and a reinforcement learning process, which minimizes movement error and effort. To test this hypothesis, we developed a neuro-musculoskeletal model that controls a 7-muscle planar arm via a cortical network that includes a primary motor cortex and a premotor cortex that directly project to spinal motor neurons, and a contra-lesional primary motor cortex that projects to spinal motor neurons via the reticular formation. Synapses in the cortical areas are updated via reinforcement learning and the activity of spinal motor neurons is adjusted through homeostatic regulation. The model replicated neural, muscular, and behavioral outcomes in both non-lesioned and lesioned brains. With increasing lesion sizes, the model demonstrated systematic recruitment of the remaining primary motor cortex, premotor cortex, and contra-lesional cortex. The premotor cortex acted as a reserve area for fine motor control recovery, while the contra-lesional cortex helped avoid paralysis at the cost of poor joint control. Plasticity in spinal motor neurons enabled force generation after large cortical lesions despite weak corticospinal inputs. Compensatory activity in the premotor and contra-lesional motor cortex was more prominent in the early recovery period, gradually decreasing as the network minimized effort. Thus, the orderly recruitment of compensatory areas following strokes of varying sizes results from biologically plausible local plastic processes that maximize performance, whether the brain is intact or lesioned.

摘要

中风后代偿性运动皮层区域的有序募集取决于影响手臂和手部运动的运动皮层损伤大小,但其重组的潜在机制尚不清楚。在此,我们假设代偿区域的募集是运动系统在考虑损伤前后解剖学限制的情况下优化运动表现的目标所导致的。这种优化通过两个互补的可塑性过程实现:一个是稳态调节过程,它使感觉运动网络中的信息传递最大化;另一个是强化学习过程,它使运动误差和努力最小化。为了验证这一假设,我们开发了一个神经肌肉骨骼模型,该模型通过一个皮层网络控制一个具有7块肌肉的平面手臂,该皮层网络包括直接投射到脊髓运动神经元的初级运动皮层和运动前皮层,以及经网状结构投射到脊髓运动神经元的健侧初级运动皮层。皮层区域的突触通过强化学习进行更新,脊髓运动神经元的活动通过稳态调节进行调整。该模型复制了未损伤和损伤大脑中的神经、肌肉和行为结果。随着损伤大小的增加,该模型展示了剩余初级运动皮层、运动前皮层和健侧皮层的系统性募集。运动前皮层作为精细运动控制恢复的储备区域,而健侧皮层则以关节控制不佳为代价帮助避免瘫痪。尽管皮质脊髓输入较弱,但脊髓运动神经元的可塑性使得在大的皮层损伤后仍能产生力量。运动前皮层和健侧运动皮层的代偿性活动在早期恢复阶段更为突出,随着网络努力最小化,逐渐减少。因此,不同大小中风后代偿区域的有序募集是由生物学上合理的局部可塑性过程导致的,这些过程使表现最大化,无论大脑是完整的还是受损的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c673/11244868/564f50e14e74/nihpp-2024.06.28.601213v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验