Suppr超能文献

一种新型的石墨烯量子点和分子印迹聚合物复合材料,用于对邻硝基苯酚的荧光检测。

A novel composite of graphene quantum dots and molecularly imprinted polymer for fluorescent detection of paranitrophenol.

机构信息

Department of Chemistry, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China.

出版信息

Biosens Bioelectron. 2014 Feb 15;52:317-23. doi: 10.1016/j.bios.2013.09.022. Epub 2013 Sep 16.

Abstract

A novel fluorescent sensor based on graphene quantum dots (GQDs) was synthesized for determination of paranitrophenol (4-NP) in water sample, where molecularly imprinted polymer (MIP) was incorporated in GQDs-based sensing system for the first time. A simple hydrothermal method was used to fabricate silica-coated GQDs. The final composite was developed by anchoring the MIP layer on the silica-coated GQDs using 3-aminopropyltriethoxysilane as functional monomer and tetraethoxysilane as crosslinker. The combination of GQDs and MIP endows the composite with stable fluorescent property and template selectivity. Due to resonance energy transfer from GQDs (donor) to 4-NP (acceptor), the fluorescence of the MIP-coated GQDs composite can be efficiently quenched when 4-NP molecules rebound to the binding sites. The composite was applied to the detection of the non-emissive 4-NP and exhibited a good linearity in range of 0.02-3.00 µg mL(-1) with the detection limit of 9.00 ng mL(-1) (S/N=3). This work may open a new possibility for developing GQDs-based composite with selective recognition, and it is desirable for chemical sensing application.

摘要

一种基于石墨烯量子点(GQDs)的新型荧光传感器被合成用于测定水样中的对硝基苯酚(4-NP),其中分子印迹聚合物(MIP)首次被引入到基于 GQDs 的传感系统中。采用简单的水热法制备了硅涂层 GQDs。最后,通过将 MIP 层锚定在硅涂层 GQDs 上,使用 3-氨丙基三乙氧基硅烷作为功能单体和四乙氧基硅烷作为交联剂,制备了最终的复合材料。GQDs 和 MIP 的结合赋予了复合材料稳定的荧光性质和模板选择性。由于从 GQDs(供体)到 4-NP(受体)的共振能量转移,当 4-NP 分子重新结合到结合位点时,MIP 涂层的 GQDs 复合材料的荧光可以被有效地猝灭。该复合材料被用于非发光性 4-NP 的检测,并表现出在 0.02-3.00 µg mL(-1) 范围内的良好线性关系,检测限为 9.00 ng mL(-1)(S/N=3)。这项工作可能为开发具有选择性识别功能的基于 GQDs 的复合材料开辟了新的可能性,对于化学传感应用是理想的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验