Henderson Jeremy C, O'Brien John P, Brodbelt Jennifer S, Trent M Stephen
Section of Molecular Genetics and Microbiology, The University of Texas at Austin.
J Vis Exp. 2013 Sep 16(79):e50623. doi: 10.3791/50623.
Lipopolysaccharide (LPS) is the major cell surface molecule of gram-negative bacteria, deposited on the outer leaflet of the outer membrane bilayer. LPS can be subdivided into three domains: the distal O-polysaccharide, a core oligosaccharide, and the lipid A domain consisting of a lipid A molecular species and 3-deoxy-D-manno-oct-2-ulosonic acid residues (Kdo). The lipid A domain is the only component essential for bacterial cell survival. Following its synthesis, lipid A is chemically modified in response to environmental stresses such as pH or temperature, to promote resistance to antibiotic compounds, and to evade recognition by mediators of the host innate immune response. The following protocol details the small- and large-scale isolation of lipid A from gram-negative bacteria. Isolated material is then chemically characterized by thin layer chromatography (TLC) or mass-spectrometry (MS). In addition to matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS, we also describe tandem MS protocols for analyzing lipid A molecular species using electrospray ionization (ESI) coupled to collision induced dissociation (CID) and newly employed ultraviolet photodissociation (UVPD) methods. Our MS protocols allow for unequivocal determination of chemical structure, paramount to characterization of lipid A molecules that contain unique or novel chemical modifications. We also describe the radioisotopic labeling, and subsequent isolation, of lipid A from bacterial cells for analysis by TLC. Relative to MS-based protocols, TLC provides a more economical and rapid characterization method, but cannot be used to unambiguously assign lipid A chemical structures without the use of standards of known chemical structure. Over the last two decades isolation and characterization of lipid A has led to numerous exciting discoveries that have improved our understanding of the physiology of gram-negative bacteria, mechanisms of antibiotic resistance, the human innate immune response, and have provided many new targets in the development of antibacterial compounds.
脂多糖(LPS)是革兰氏阴性菌主要的细胞表面分子,沉积在外膜双层的外层小叶上。LPS可细分为三个结构域:远端O-多糖、核心寡糖以及由一种脂多糖分子种类和3-脱氧-D-甘露糖-辛-2-酮糖酸残基(Kdo)组成的脂质A结构域。脂质A结构域是细菌细胞存活所必需的唯一成分。脂质A合成后,会根据pH值或温度等环境压力进行化学修饰,以增强对抗生素化合物的抗性,并逃避宿主先天免疫反应介质的识别。以下方案详细介绍了从革兰氏阴性菌中大规模和小规模分离脂质A的方法。然后通过薄层色谱法(TLC)或质谱法(MS)对分离出的物质进行化学表征。除了基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF MS)外,我们还描述了串联质谱方案,用于使用电喷雾电离(ESI)结合碰撞诱导解离(CID)和新采用的紫外光解离(UVPD)方法分析脂质A分子种类。我们的质谱方案能够明确确定化学结构,这对于表征含有独特或新型化学修饰的脂质A分子至关重要。我们还描述了脂质A从细菌细胞中的放射性同位素标记及后续分离,以便通过TLC进行分析。相对于基于质谱的方案,TLC提供了一种更经济、快速的表征方法,但如果不使用已知化学结构的标准品,则无法明确确定脂质A的化学结构。在过去二十年中,脂质A的分离和表征带来了许多令人兴奋的发现,这些发现增进了我们对革兰氏阴性菌生理学、抗生素抗性机制、人类先天免疫反应的理解,并为抗菌化合物的开发提供了许多新靶点。